CS 189/289A Introduction to Machine Learning Fall 2023 Jennifer Listgarten, Jitendra Malik

DIS0

1

1 Back to Basics: Linear Algebra

Let $X \in \mathbb{R}^{m \times n}$. We do not assume that X has full rank.

- (a) Give the definition of the rowspace, columnspace, and nullspace of *X*.
- (b) Check (write an informal proof for) the following facts:
 - (a) The rowspace of X is the columnspace of X^{\top} , and vice versa.
 - (b) The nullspace of *X* and the rowspace of *X* are orthogonal complements.
 - (c) The nullspace of $X^{\top}X$ is the same as the nullspace of *X*. *Hint: if v is in the nullspace of* $X^{\top}X$, *then* $v^{\top}X^{\top}Xv = 0$.
 - (d) The columnspace and rowspace of $X^{T}X$ are the same, and are equal to the rowspace of *X*. *Hint: Use the relationship between nullspace and rowspace.*

2 Probability Review

There are n archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer's score is independent of the others, and is distributed uniformly between 0 and 1. What is the expected value of the worst (highest) score?

- (a) Define a random variable Z that corresponds with the worst (highest) score.
- (b) Derive the Cumulative Distribution Function (CDF) of Z.
- (c) Derive the Probability Density Function (PDF) of Z.
- (d) Calculate the expected value of Z.

3 Vector Calculus

1

• The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• Khan Academy:

¹Good resources for matrix calculus are:

[•] Wikipedia: https://en.wikipedia.org/wiki/Matrix_calculus

Below, $\mathbf{x} \in \mathbb{R}^d$ means that \mathbf{x} is a $d \times 1$ column vector with real-valued entries. Likewise, $\mathbf{A} \in \mathbb{R}^{d \times d}$ means that \mathbf{A} is a $d \times d$ matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$. In the following questions, $\frac{\partial}{\partial \mathbf{x}}$ denotes the derivative with respect to \mathbf{x} , while $\nabla_{\mathbf{x}} d$ enotes the gradient with respect to \mathbf{x} . Recall that $\nabla_{\mathbf{x}} f = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top}$. Derive the following derivatives.

(a)
$$\frac{\partial \mathbf{w}^{\top} \mathbf{x}}{\partial \mathbf{x}}$$
 and $\nabla_{\mathbf{x}}(\mathbf{w}^{\top} \mathbf{x})$
(b) $\frac{\partial (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}(\mathbf{w}^{\top} \mathbf{A} \mathbf{x})$
(c) $\frac{\partial (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{w}}$ and $\nabla_{\mathbf{w}}(\mathbf{w}^{\top} \mathbf{A} \mathbf{x})$
(d) $\frac{\partial (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{A}}$ and $\nabla_{\mathbf{A}}(\mathbf{w}^{\top} \mathbf{A} \mathbf{x})$
(e) $\frac{\partial (\mathbf{x}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}(\mathbf{x}^{\top} \mathbf{A} \mathbf{x})$
(f) $\nabla_{\mathbf{x}}^2(\mathbf{x}^{\top} \mathbf{A} \mathbf{x})$

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives

[•] YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7.