## 1 Back to Basics: Linear Algebra

Let $X \in \mathbb{R}^{m \times n}$. We do not assume that $X$ has full rank.
(a) Give the definition of the rowspace, columnspace, and nullspace of $X$.

Solution: The rowspace is the span (or the set of all linear combinations) of the rows of $X$, the columnspace is the span of the columns of $X$, also known as $\operatorname{Range}(X)$, and the nullspace is the set of vectors $v$ such that $X v=0$, also known as $\mathcal{N}(X)$.
(b) Check (write an informal proof for) the following facts:
(a) The rowspace of $X$ is the columnspace of $X^{\top}$, and vice versa.

Solution: The rows of $X$ are the columns of $X^{\top}$, and vice versa.
(b) The nullspace of $X$ and the rowspace of $X$ are orthogonal complements.

Solution: $v$ is in the nullspace of $X$ if and only if $X v=0$, which is true if and only if for every row $X_{i}$ of $X,\left\langle X_{i}, v\right\rangle=0$. This is precisely the condition that $v$ is perpendicular to each row of $X$. This means that $v$ is in the nullspace of $X$ if and only if $v$ is in the orthogonal complement of the span of the rows of $X$, i.e. the orthogonal complement of the rowspace of $X$.
(c) The nullspace of $X^{\top} X$ is the same as the nullspace of $X$. Hint: if $v$ is in the nullspace of $X^{\top} X$, then $v^{\top} X^{\top} X v=0$.
Solution: If $v$ is in the nullspace of $X$, then $X^{\top} X v=X^{\top} 0=0$. On the other hand, if $v$ is in the nullspace of $X^{\top} X$, then $v^{\top} X^{\top} X v=v^{\top} 0=0$. Then, $v^{\top} X^{\top} X v=\|X v\|_{2}^{2}=0$, which implies that $X v=0$.
(d) The columnspace and rowspace of $X^{\top} X$ are the same, and are equal to the rowspace of $X$. Hint: Use the relationship between nullspace and rowspace.
Solution: $X^{\top} X$ is symmetric, and by part (a),

$$
\operatorname{rowspace}\left(X^{\top} X\right)=\operatorname{columnspace}\left(\left(X^{\top} X\right)^{\top}\right)=\operatorname{columnspace}\left(X^{\top} X\right)
$$

By part (b), (c), then (b) again,

$$
\operatorname{rowspace}\left(X^{\top} X\right)=\operatorname{nullspace}\left(X^{\top} X\right)^{\perp}=\operatorname{nullspace}(X)^{\perp}=\operatorname{rowspace}(X)
$$

where ()$^{\perp}$ denotes orthogonal complement.

## 2 Probability Review

There are $n$ archers all shooting at the same target (bulls-eye) of radius 1 . Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer's score is independent of the others, and is distributed uniformly between 0 and 1 . What is the expected value of the worst (highest) score?
(a) Define a random variable $Z$ that corresponds with the worst (highest) score.

Solution: $Z=\max \left\{X_{1}, \ldots, X_{n}\right\}$.
(b) Derive the Cumulative Distribution Function (CDF) of $Z$.

## Solution:

$$
\begin{gathered}
F(z)=P(Z \leq z)=P\left(X_{1} \leq z\right) P\left(X_{2} \leq z\right) \cdots P\left(X_{n} \leq z\right)=\prod_{i=1}^{n} P\left(X_{i} \leq z\right) \\
=\left\{\begin{array}{cr}
0 & \text { if } z<0, \\
z^{n} & \text { if } 0 \leq z \leq 1, \\
1 & \text { if } z>1 .
\end{array}\right.
\end{gathered}
$$

(c) Derive the Probability Density Function (PDF) of $Z$.

## Solution:

$$
f(z)=\frac{d}{d z} F(z)=\left\{\begin{array}{lr}
n z^{n-1} & \text { if } 0 \leq z \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(d) Calculate the expected value of $Z$.

## Solution:

$$
E[Z]=\int_{-\infty}^{\infty} z f(z) \mathrm{d} z=\int_{0}^{1} z n z^{n-1} \mathrm{~d} z=n \int_{0}^{1} z^{n} \mathrm{~d} z=\frac{n}{n+1}
$$

## 3 Vector Calculus

T
${ }^{1}$ Good resources for matrix calculus are:

- The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Wikipedia: https://en.wikipedia.org/wiki/Matrix_calculus
- Khan Academy: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
- YouTube: https://www.youtube.com/playlist?list=PLSQ10a2vh4HC5feHa6Rc5c0wbRTx56nF7.

Below, $\mathbf{x} \in \mathbb{R}^{d}$ means that $\mathbf{x}$ is a $d \times 1$ column vector with real-valued entries. Likewise, $\mathbf{A} \in \mathbb{R}^{d \times d}$ means that $\mathbf{A}$ is a $d \times d$ matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.
Consider $\mathbf{x}, \mathbf{w} \in \mathbb{R}^{d}$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$. In the following questions, $\frac{\partial}{\partial \mathbf{x}}$ denotes the derivative with respect to $\mathbf{x}$, while $\nabla_{\mathbf{x}}$ denotes the gradient with respect to $\mathbf{x}$. Recall that $\nabla_{\mathbf{x}} f=\left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top}$.
Solution: Let us first understand the definition of the derivative. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ denote a scalar function. Then the derivative $\frac{\partial f}{\partial \mathbf{x}}$ is an operator that can help find the change in function value at $\mathbf{x}$, up to first order, when we add a little perturbation $\Delta \in \mathbb{R}^{d}$ to $\mathbf{x}$. That is,

$$
\begin{equation*}
f(\mathbf{x}+\Delta)=f(\mathbf{x})+\frac{\partial f}{\partial \mathbf{x}} \Delta+o(\|\Delta\|) \tag{1}
\end{equation*}
$$

where $o(\|\Delta\|)$ stands for any term $r(\Delta)$ such that $r(\Delta) /\|\Delta\| \rightarrow 0$ as $\|\Delta\| \rightarrow 0$. An example of such a term is a quadratic term like $\|\Delta\|^{2}$. Let us quickly verify that $r(\Delta)=\|\Delta\|^{2}$ is indeed an $o(\|\Delta\|)$ term. As $\|\Delta\| \rightarrow 0$, we have

$$
\frac{r(\Delta)}{\|\Delta\|}=\frac{\|\Delta\|^{2}}{\|\Delta\|}=\|\Delta\| \rightarrow 0
$$

thereby verifying our claim. As a rule of thumb, any term that has a higher-order dependence on $\|\Delta\|$ than linear is $o(\|\Delta\|)$ and is ignored to compute the derivative $\int^{2}$
We call $\frac{\partial f}{\partial \mathbf{x}}$ the derivative of $f$ at $\mathbf{x}$. Sometimes we use $\frac{d f}{d \mathbf{x}}$ but we also use $\partial$ to indicate that $f$ may depend on some other variable too. (But to define $\frac{\partial f}{\partial \mathbf{x}}$, we study changes in $f$ with respect to changes in only $\mathbf{x}$.)
Since $\Delta$ is a column vector the vector $\frac{\partial f}{\partial \mathbf{x}}$ should be a row vector so that $\frac{\partial f}{\partial \mathbf{x}} \Delta$ is a scalar. The gradient of $f$ at $\mathbf{x}$ is defined to be the transpose of this derivative. That is $\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top}$.
We now write down some formulas that would be helpful to compute different derivatives in various settings where a solution via first principle might be hard to compute. We will also distinguish between the derivative, gradient, Jacobian, and Hessian in our notation.

1. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ denote a scalar function. Let $\mathbf{x} \in \mathbb{R}^{d}$ denote a vector and $\mathbf{A} \in \mathbb{R}^{d \times d}$ denote a matrix. We have

$$
\begin{align*}
& \frac{\partial f}{\partial \mathbf{x}} \in \mathbb{R}^{1 \times d} \text { such that } \frac{\partial f}{\partial \mathbf{x}}=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{d}}\right]  \tag{2}\\
& \nabla_{\mathbf{x}} f=\left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\top}=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{d}}
\end{array}\right] . \tag{3}
\end{align*}
$$

[^0]2. Let $y: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a scalar function defined on the space of $m \times n$ matrices. Then its derivative is an $n \times m$ matrix and is given by
\[

$$
\begin{equation*}
\frac{\partial y}{\partial \mathbf{B}} \in \mathbb{R}^{n \times m} \quad \text { such that } \quad\left[\frac{\partial y}{\partial \mathbf{B}}\right]_{i j}=\frac{\partial y}{\partial B_{j i}} \tag{4}
\end{equation*}
$$

\]

3. For $\mathbf{z}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ a vector-valued function; its derivative $\frac{\partial \mathbf{z}}{\partial \mathbf{x}}$ is an operator such that it can help find the change in function value at $\mathbf{x}$, up to first order, when we add a little perturbation $\Delta$ to $\mathbf{x}$ :

$$
\begin{equation*}
\mathbf{z}(\mathbf{x}+\Delta)=\mathbf{z}(\mathbf{x})+\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \Delta+o(\|\Delta\|) \tag{5}
\end{equation*}
$$

A formula for the same can be derived as

$$
\begin{align*}
& J(\mathbf{z})=\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \in \mathbb{R}^{k \times d}=\left[\begin{array}{c}
\frac{\partial z_{1}}{\partial \mathbf{x}} \\
\frac{\partial z_{2}}{\partial \mathbf{x}} \\
\vdots \\
\frac{\partial z_{k}}{\partial \mathbf{x}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial z_{2}} & \cdots & \frac{\partial z_{1}}{\partial x_{d}} \\
\frac{\partial z z z}{} & \frac{\partial z 2}{} & \cdots & \frac{\partial z_{2}}{\partial x_{1}} \\
\vdots & & & \\
\frac{\partial z_{k}}{\partial x_{1}} & \frac{\partial z_{k}}{\partial x_{2}} & \cdots & \frac{\partial z_{k}}{\partial x_{d}}
\end{array}\right],  \tag{6}\\
& \text { that is }[J(\mathbf{z})]_{i j}=\left[\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right]_{i j}=\frac{\partial z_{i}}{\partial x_{j}} . \tag{7}
\end{align*}
$$

4. However, the Hessian of $f$ is defined as

$$
H(f)=\nabla^{2} f(\mathbf{x})=J(\nabla f)^{\top}=\left[\begin{array}{cccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{1}} & \cdots & \frac{\partial z_{d}}{\partial x_{1}}  \tag{8}\\
\frac{\partial z_{1}}{\partial x_{2}} & \frac{\partial z 2}{\partial x_{2}} & \cdots & \frac{\partial z_{d}}{\partial x_{2}} \\
\vdots & & & \\
\frac{\partial z_{1}}{\partial x_{d}} & \frac{\partial z_{2}}{\partial x_{d}} & \cdots & \frac{\partial z_{d}}{\partial x_{d}}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \ldots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{d}} \\
\vdots & & & \\
\frac{\partial^{2} f}{\partial x_{d} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{d} \partial x_{2}} & \ldots & \frac{\partial^{2} f}{\partial x_{d}^{2}} .
\end{array}\right]
$$

For sufficiently smooth functions (when the mixed derivatives are equal), the Hessian is a symmetric matrix and in such cases (which cover a lot of cases in daily use) the convention does not matter.
5. The following linear algebra formulas are also helpful:

$$
\begin{align*}
(\mathbf{A} \mathbf{x})_{i} & =\sum_{j=1}^{d} A_{i j} x_{j}, \quad \text { and },  \tag{9}\\
\left(\mathbf{A}^{\top} \mathbf{x}\right)_{i} & =\sum_{j=1}^{d} \mathbf{A}_{i j}^{\top} x_{j}=\sum_{j=1}^{d} A_{j i} x_{j} . \tag{10}
\end{align*}
$$

Derive the following derivatives.
(a) $\frac{\partial \mathbf{w}^{\top} \mathbf{x}}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}\left(\mathbf{w}^{\top} \mathbf{x}\right)$

## Solution:

The idea is to use $f=\mathbf{w}^{\top} \mathbf{x}$ and apply equation (2). Note that $\mathbf{w}^{\top} \mathbf{x}=\sum_{j} w_{j} x_{j}$. Hence, we have

$$
\frac{\partial f}{\partial x_{i}}=\frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{i}}=w_{i} .
$$

Thus, we find that

$$
\frac{\partial \mathbf{w}^{\top} \mathbf{x}}{\partial \mathbf{x}}=\frac{\partial \sum_{j} w_{j} x_{j}}{\partial \mathbf{x}}=\left[\frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{1}}, \frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{2}}, \ldots, \frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{d}}\right]=\left[w_{1}, w_{2}, \ldots, w_{d}\right]=\mathbf{w}^{\top} .
$$

And $\nabla_{\mathbf{x}}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\frac{\partial \mathbf{w}^{\top} \mathbf{x}^{\top}}{\partial \mathbf{x}}=\mathbf{w}$.
(b) $\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A x}\right)}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}\left(\mathbf{w}^{\top} \mathbf{A x}\right)$

Solution: We discuss two ways to solve the problem.

Using part (a): Note that we can solve this question simply by using part (a). We substitute $\mathbf{u}=\mathbf{A}^{\top} \mathbf{w}$ to obtain that $f(\mathbf{x})=\mathbf{u}^{\top} \mathbf{x}$. Now from part (a), we conclude that

$$
\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{x}}=\frac{\partial \mathbf{u}^{\top} \mathbf{x}}{\partial \mathbf{x}}=\mathbf{u}^{\top}=\mathbf{w}^{\top} \mathbf{A} \quad \text { and } \quad \nabla_{\mathbf{x}}\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)=\left(\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{\top}=\mathbf{A}^{\top} \mathbf{w}
$$

Using the formula (2): The idea is to use $f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{A x}$, and apply equation (2). Using the fact that $\mathbf{w}^{\top} \mathbf{A} \mathbf{x}=\sum_{i=1}^{d} \sum_{j=1}^{d} w_{i} A_{i j} x_{j}$, we find that

$$
\frac{\partial f}{\partial x_{j}}=\frac{\partial \sum_{i=1}^{d} \sum_{j=1}^{d} w_{i} A_{i j} x_{j}}{\partial x_{j}}=\frac{\partial \sum_{j=1}^{d} x_{j}\left(\sum_{i=1}^{d} A_{i j} w_{i}\right)}{\partial x_{j}}=\sum_{i=1}^{d} A_{i j} w_{i}=\sum_{i=1}^{d} A_{j i}^{\top} w_{i}=\left(\mathbf{A}^{\top} \mathbf{w}\right)_{j},
$$

where in the last step we have used equation (10). Consequently, we have

$$
\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{x}}=\left[\left(\mathbf{A}^{\top} \mathbf{w}\right)_{1},\left(\mathbf{A}^{\top} \mathbf{w}\right)_{2}, \ldots,\left(\mathbf{A}^{\top} \mathbf{w}\right)_{d}\right]=\left(\mathbf{A}^{\top} \mathbf{w}\right)^{\top}=\mathbf{w}^{\top} \mathbf{A}
$$

and

$$
\nabla_{\mathbf{x}}\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)=\left(\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{x}}\right)^{\top}=\mathbf{A}^{\top} \mathbf{w}
$$

(c) $\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A x}\right)}{\partial \mathbf{w}}$ and $\nabla_{\mathbf{w}}\left(\mathbf{w}^{\top} \mathbf{A x}\right)$

Solution: We discuss two ways to solve the problem.

Using part (a) and (b): Note that we can solve this question simply by using part (a) and (b). We have $\left(\mathbf{w}^{\top} \mathbf{A x}\right)=\left(\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{w}\right)$, since for a scalar $\alpha$, we have $\alpha=\alpha^{\top}$. And in part (b), reversing the roles of $\mathbf{x}$ and $\mathbf{w}$, we obtain that

$$
\frac{\partial \mathbf{w}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{w}}=\frac{\partial \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{w}}{\partial \mathbf{w}}=\mathbf{x}^{\top} \mathbf{A}^{\top} \quad \text { and } \quad \nabla_{\mathbf{w}}\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)=\left(\frac{\partial \mathbf{w}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{w}}\right)^{\top}=\mathbf{A} \mathbf{x}
$$

Using the formula (2) Using a similar idea as in the previous part, we have

$$
\frac{\partial f}{\partial w_{i}}=\frac{\partial \sum_{i=1}^{d} \sum_{j=1}^{d} w_{i} A_{i j} x_{j}}{\partial w_{i}}=\frac{\partial \sum_{i=1}^{d} w_{i}\left(\sum_{j=1}^{d} A_{i j} x_{j}\right)}{\partial w_{i}}=\sum_{j=1}^{d} A_{i j} x_{j}=(\mathbf{A} \mathbf{x})_{i}
$$

where in the last step we have used equation (9). Consequently, we have

$$
\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{w}}=\left[(\mathbf{A} \mathbf{x})_{1},(\mathbf{A} \mathbf{x})_{2}, \ldots,(\mathbf{A} \mathbf{x})_{d}\right]=(\mathbf{A x})^{\top}=\mathbf{x}^{\top} \mathbf{A}^{\top}
$$

and

$$
\nabla_{\mathbf{w}}\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)=\left(\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{w}}\right)^{\top}=\left(\mathbf{x}^{\top} \mathbf{A}^{\top}\right)^{\top}=\mathbf{A} \mathbf{x} .
$$

(d) $\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A x}\right)}{\partial \mathbf{A}}$ and $\nabla_{\mathbf{A}}\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)$

Solution:

Using the formula (4): We use $y=\mathbf{w}^{\top} \mathbf{A x}$ and apply the formula (4). We have $\mathbf{w}^{\top} \mathbf{A x}=$ $\sum_{i=1}^{d} \sum_{j=1}^{d} w_{i} A_{i j} x_{j}$ and hence

$$
\left[\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{A}}\right]_{i j}=\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial A_{j i}}=w_{j} x_{i}=\left(\mathbf{x w}^{\top}\right)_{i j} .
$$

Consequently, we have

$$
\frac{\partial\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{A}}=\left[\left(\mathbf{x w}^{\top}\right)_{i j}\right]=\mathbf{x w}^{\top},
$$

and thereby $\nabla_{\mathbf{A}}\left(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}\right)=\mathbf{w} \mathbf{x}^{\top}$.
(e) $\frac{\partial\left(\mathbf{(}^{\top} \mathbf{A x}\right)}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right)$

## Solution:

We provide two ways to solve this problem.

Using the formula (2): We have $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=\sum_{i=1}^{d} \sum_{j=1}^{d} x_{i} A_{i j} x_{j}$. For any given index $\ell$, we have

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=A_{\ell \ell} x_{\ell}^{2}+x_{\ell} \sum_{j \neq \ell}\left(A_{j \ell}+A_{\ell j}\right) x_{j}+\sum_{i \neq \ell} \sum_{j \neq \ell} x_{i} A_{i j} x_{j}
$$

Thus we have

$$
\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial x_{\ell}}=2 A_{\ell \ell} x_{\ell}+\sum_{j \neq \ell}\left(A_{j \ell}+A_{\ell j}\right) x_{j}=\sum_{j=1}^{d}\left(A_{j \ell}+A_{\ell j}\right) x_{j}=\left(\left(\mathbf{A}^{\top}+\mathbf{A}\right) \mathbf{x}\right)_{\ell} .
$$

And consequently

$$
\begin{aligned}
\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} & =\left[\frac{\partial \mathbf{x}^{\top} \mathbf{A x}}{\partial x_{1}}, \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial x_{2}}, \ldots, \frac{\partial \mathbf{x}^{\top} \mathbf{A x}}{\partial x_{d}}\right] \\
& =\left[\left(\left(\mathbf{A}^{\top}+\mathbf{A}\right) \mathbf{x}\right)_{1},\left(\left(\mathbf{A}^{\top}+\mathbf{A}\right) \mathbf{x}\right)_{2}, \ldots,\left(\left(\mathbf{A}^{\top}+\mathbf{A}\right) \mathbf{x}\right)_{d}\right] \\
& =\left(\left(\mathbf{A}^{\top}+\mathbf{A}\right) \mathbf{x}\right)^{\top} \\
& =\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right),
\end{aligned}
$$

and hence $\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right)=\left[\frac{\partial\left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right)}{\partial \mathbf{x}}\right]^{\top}=\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x}$.

Using the product rule: Let

$$
\begin{aligned}
& g(\mathbf{x})=\mathbf{x} \\
& h(\mathbf{x})=\mathbf{A} \mathbf{x}
\end{aligned}
$$

We have that

$$
\begin{aligned}
\frac{d g(\mathbf{x})}{d \mathbf{x}} & =\mathbf{I} \\
\frac{d h(\mathbf{x})}{d \mathbf{x}} & =\mathbf{A} .
\end{aligned}
$$

The product rule says that

$$
\begin{aligned}
\frac{d\left(\mathbf{x}^{\top} \mathbf{A x}\right)}{d \mathbf{x}}=\frac{d\left(g(\mathbf{x})^{\top} h(\mathbf{x})\right)}{d \mathbf{x}} & =g(\mathbf{x})^{\top} \frac{d h(\mathbf{x})}{d \mathbf{x}}+h(\mathbf{x})^{\top} \frac{d g(\mathbf{x})}{d \mathbf{x}} \\
& =\mathbf{x}^{\top} \mathbf{A}+\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{I} \\
& =\mathbf{x}^{\top}\left(\mathbf{A}+\mathbf{A}^{\top}\right)
\end{aligned}
$$

and hence $\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A x}\right)=\left(\mathbf{A}+\mathbf{A}^{\top}\right) \mathbf{x}$
(f) $\nabla_{\mathbf{x}}^{2}\left(\mathbf{x}^{\top} \mathbf{A x}\right)$

## Solution:

Using the formula (8): A straight forward computation yields that

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=A_{i j}+A_{j i}
$$

and hence

$$
\nabla^{2} f(\mathbf{x})=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]=\left[\left(A_{i j}+A_{j i}\right)\right]=\mathbf{A}+\mathbf{A}^{\top} .
$$


[^0]:    ${ }^{2}$ Note that $r(\Delta)=\sqrt{\|\Delta\|}$ is not an $o(\|\Delta\|)$ term. Since for this case, $r(\Delta) /\|\Delta\|=1 / \sqrt{\|\Delta\|} \rightarrow \infty$ as $\|\Delta\| \rightarrow 0$.

