CS 189/289A Introduction to Machine Learning Fall 2023 Jennifer Listgarten, Jitendra Malik

1 Back to Basics: Linear Algebra

Let $X \in \mathbb{R}^{m \times n}$. We do not assume that *X* has full rank.

(a) Give the definition of the rowspace, columnspace, and nullspace of X.

Solution: The rowspace is the span (or the set of all linear combinations) of the rows of *X*, the columnspace is the span of the columns of *X*, also known as Range(X), and the nullspace is the set of vectors *v* such that Xv = 0, also known as $\mathcal{N}(X)$.

- (b) Check (write an informal proof for) the following facts:
 - (a) The rowspace of X is the columnspace of X^{T} , and vice versa.

Solution: The rows of *X* are the columns of X^{T} , and vice versa.

(b) The nullspace of X and the rowspace of X are orthogonal complements.

Solution: *v* is in the nullspace of *X* if and only if Xv = 0, which is true if and only if for every row X_i of X, $\langle X_i, v \rangle = 0$. This is precisely the condition that *v* is perpendicular to each row of *X*. This means that *v* is in the nullspace of *X* if and only if *v* is in the orthogonal complement of the span of the rows of *X*, i.e. the orthogonal complement of the rowspace of *X*.

(c) The nullspace of $X^{\top}X$ is the same as the nullspace of *X*. *Hint: if v is in the nullspace of* $X^{\top}X$, *then* $v^{\top}X^{\top}Xv = 0$.

Solution: If *v* is in the nullspace of *X*, then $X^{\top}Xv = X^{\top}0 = 0$. On the other hand, if *v* is in the nullspace of $X^{\top}X$, then $v^{\top}X^{\top}Xv = v^{\top}0 = 0$. Then, $v^{\top}X^{\top}Xv = ||Xv||_2^2 = 0$, which implies that Xv = 0.

(d) The columnspace and rowspace of $X^{T}X$ are the same, and are equal to the rowspace of *X*. *Hint: Use the relationship between nullspace and rowspace.*

Solution: $X^{T}X$ is symmetric, and by part (a),

rowspace($X^{\top}X$) = columnspace($(X^{\top}X)^{\top}$) = columnspace($X^{\top}X$)

By part (b), (c), then (b) again,

rowspace($X^{\top}X$) = nullspace($X^{\top}X$)^{\perp} = nullspace(X)^{\perp} = rowspace(X),

where $()^{\perp}$ denotes orthogonal complement.

2 Probability Review

There are *n* archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer's score is independent of the others, and is distributed uniformly between 0 and 1. What is the expected value of the worst (highest) score?

(a) Define a random variable Z that corresponds with the worst (highest) score.

Solution: $Z = \max\{X_1, ..., X_n\}.$

(b) Derive the Cumulative Distribution Function (CDF) of Z.

Solution:

$$F(z) = P(Z \le z) = P(X_1 \le z) P(X_2 \le z) \cdots P(X_n \le z) = \prod_{i=1}^n P(X_i \le z)$$
$$= \begin{cases} 0 & \text{if } z < 0, \\ z^n & \text{if } 0 \le z \le 1, \\ 1 & \text{if } z > 1. \end{cases}$$

(c) Derive the Probability Density Function (PDF) of Z.

Solution:

$$f(z) = \frac{d}{dz}F(z) = \begin{cases} nz^{n-1} & \text{if } 0 \le z \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

(d) Calculate the expected value of Z.

Solution:

$$E[Z] = \int_{-\infty}^{\infty} z f(z) dz = \int_{0}^{1} z n z^{n-1} dz = n \int_{0}^{1} z^{n} dz = \frac{n}{n+1}.$$

3 Vector Calculus

1

¹Good resources for matrix calculus are:

- The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Wikipedia: https://en.wikipedia.org/wiki/Matrix_calculus
- Khan Academy: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
- YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7.

Below, $\mathbf{x} \in \mathbb{R}^d$ means that \mathbf{x} is a $d \times 1$ column vector with real-valued entries. Likewise, $\mathbf{A} \in \mathbb{R}^{d \times d}$ means that \mathbf{A} is a $d \times d$ matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider $\mathbf{x}, \mathbf{w} \in \mathbb{R}^d$ and $\mathbf{A} \in \mathbb{R}^{d \times d}$. In the following questions, $\frac{\partial}{\partial \mathbf{x}}$ denotes the derivative with respect to \mathbf{x} , while $\nabla_{\mathbf{x}}$ denotes the gradient with respect to \mathbf{x} . Recall that $\nabla_{\mathbf{x}} f = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\mathsf{T}}$.

Solution: Let us first understand the definition of the derivative. Let $f : \mathbb{R}^d \to \mathbb{R}$ denote a scalar function. Then the derivative $\frac{\partial f}{\partial \mathbf{x}}$ is an operator that can help find the change in function value at \mathbf{x} , up to first order, when we add a little perturbation $\Delta \in \mathbb{R}^d$ to \mathbf{x} . That is,

$$f(\mathbf{x} + \Delta) = f(\mathbf{x}) + \frac{\partial f}{\partial \mathbf{x}} \Delta + o(||\Delta||)$$
(1)

where $o(||\Delta||)$ stands for any term $r(\Delta)$ such that $r(\Delta)/||\Delta|| \to 0$ as $||\Delta|| \to 0$. An example of such a term is a quadratic term like $||\Delta||^2$. Let us quickly verify that $r(\Delta) = ||\Delta||^2$ is indeed an $o(||\Delta||)$ term. As $||\Delta|| \to 0$, we have

$$\frac{r(\Delta)}{||\Delta||} = \frac{||\Delta||^2}{||\Delta||} = ||\Delta|| \to 0,$$

thereby verifying our claim. As a rule of thumb, any term that has a higher-order dependence on $\|\Delta\|$ than linear is $o(\|\Delta\|)$ and is ignored to compute the derivative.²

We call $\frac{\partial f}{\partial \mathbf{x}}$ the *derivative of* f *at* \mathbf{x} . Sometimes we use $\frac{df}{d\mathbf{x}}$ but we also use ∂ to indicate that f may depend on some other variable too. (But to define $\frac{\partial f}{\partial \mathbf{x}}$, we study changes in f with respect to changes in only \mathbf{x} .)

Since Δ is a column vector the vector $\frac{\partial f}{\partial \mathbf{x}}$ should be a row vector so that $\frac{\partial f}{\partial \mathbf{x}} \Delta$ is a scalar. The gradient of f at \mathbf{x} is defined to be the transpose of this derivative. That is $\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\mathsf{T}}$.

We now write down some formulas that would be helpful to compute different derivatives in various settings where a solution via first principle might be hard to compute. We will also distinguish between the derivative, gradient, Jacobian, and Hessian in our notation.

1. Let $f : \mathbb{R}^d \to \mathbb{R}$ denote a scalar function. Let $\mathbf{x} \in \mathbb{R}^d$ denote a vector and $\mathbf{A} \in \mathbb{R}^{d \times d}$ denote a matrix. We have

$$\frac{\partial f}{\partial \mathbf{x}} \in \mathbb{R}^{1 \times d} \quad \text{such that} \quad \frac{\partial f}{\partial \mathbf{x}} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right]$$
(2)

$$\nabla_{\mathbf{x}} f = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^{\mathsf{T}} = \begin{bmatrix} \frac{\overline{\partial} x_1}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{bmatrix}.$$
(3)

²Note that $r(\Delta) = \sqrt{\|\Delta\|}$ is not an $o(\|\Delta\|)$ term. Since for this case, $r(\Delta)/\|\Delta\| = 1/\sqrt{\|\Delta\|} \to \infty$ as $\|\Delta\| \to 0$.

2. Let $y : \mathbb{R}^{m \times n} \to \mathbb{R}$ be a scalar function defined on the space of $m \times n$ matrices. Then its derivative is an $n \times m$ matrix and is given by

$$\frac{\partial y}{\partial \mathbf{B}} \in \mathbb{R}^{n \times m} \quad \text{such that} \quad \left[\frac{\partial y}{\partial \mathbf{B}} \right]_{ij} = \frac{\partial y}{\partial B_{ji}}.$$
(4)

3. For $\mathbf{z} : \mathbb{R}^d \to \mathbb{R}^k$ a vector-valued function; its derivative $\frac{\partial \mathbf{z}}{\partial \mathbf{x}}$ is an operator such that it can help find the change in function value at \mathbf{x} , up to first order, when we add a little perturbation Δ to \mathbf{x} :

$$\mathbf{z}(\mathbf{x} + \Delta) = \mathbf{z}(\mathbf{x}) + \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \Delta + o(||\Delta||).$$
(5)

A formula for the same can be derived as

$$J(\mathbf{z}) = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} \in \mathbb{R}^{k \times d} = \begin{bmatrix} \frac{\partial z_1}{\partial \mathbf{x}} \\ \frac{\partial z_2}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial z_k}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} & \cdots & \frac{\partial z_1}{\partial x_d} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} & \cdots & \frac{\partial z_2}{\partial x_d} \\ \vdots \\ \frac{\partial z_k}{\partial x_1} & \frac{\partial z_k}{\partial x_2} & \cdots & \frac{\partial z_k}{\partial x_d} \end{bmatrix},$$
(6)

that is
$$[J(\mathbf{z})]_{ij} = \left[\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right]_{ij} = \frac{\partial z_i}{\partial x_j}.$$
 (7)

4. However, the Hessian of f is defined as

$$H(f) = \nabla^2 f(\mathbf{x}) = J(\nabla f)^{\top} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_2}{\partial x_1} & \dots & \frac{\partial z_d}{\partial x_1} \\ \frac{\partial z_1}{\partial x_2} & \frac{\partial z_2}{\partial x_2} & \dots & \frac{\partial z_d}{\partial x_2} \\ \vdots & & & \\ \frac{\partial z_1}{\partial x_d} & \frac{\partial z_2}{\partial x_d} & \dots & \frac{\partial z_d}{\partial x_d} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\ \vdots & & & \\ \frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_d^2} \end{bmatrix}$$
(8)

For sufficiently smooth functions (when the mixed derivatives are equal), the Hessian is a symmetric matrix and in such cases (which cover a lot of cases in daily use) the convention does not matter.

5. The following linear algebra formulas are also helpful:

$$(\mathbf{A}\mathbf{x})_i = \sum_{j=1}^d A_{ij} x_j, \quad \text{and,}$$
(9)

$$(\mathbf{A}^{\mathsf{T}}\mathbf{x})_i = \sum_{j=1}^d \mathbf{A}_{ij}^{\mathsf{T}} x_j = \sum_{j=1}^d A_{ji} x_j.$$
(10)

Derive the following derivatives.

(a) $\frac{\partial \mathbf{w}^{\top} \mathbf{x}}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}}(\mathbf{w}^{\top} \mathbf{x})$

Solution:

The idea is to use $f = \mathbf{w}^{\mathsf{T}} \mathbf{x}$ and apply equation (2). Note that $\mathbf{w}^{\mathsf{T}} \mathbf{x} = \sum_{j} w_{j} x_{j}$. Hence, we have

$$\frac{\partial f}{\partial x_i} = \frac{\partial \sum_j w_j x_j}{\partial x_i} = w_i.$$

Thus, we find that

$$\frac{\partial \mathbf{w}^{\mathsf{T}} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \sum_{j} w_{j} x_{j}}{\partial \mathbf{x}} = \left[\frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{1}}, \frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{2}}, \dots, \frac{\partial \sum_{j} w_{j} x_{j}}{\partial x_{d}}\right] = \left[w_{1}, w_{2}, \dots, w_{d}\right] = \mathbf{w}^{\mathsf{T}}.$$

$$(\mathbf{w}^{\mathsf{T}} \mathbf{x}) = \frac{\partial \mathbf{w}^{\mathsf{T}} \mathbf{x}^{\mathsf{T}}}{\partial \mathbf{x}} = \mathbf{w}$$

And $\nabla_{\mathbf{x}}(\mathbf{w}^{\top}\mathbf{x}) = \frac{\partial \mathbf{w}^{\top}\mathbf{x}}{\partial \mathbf{x}}^{\top} = \mathbf{w}.$

(b) $\frac{\partial (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$ and $\nabla_{\mathbf{x}} (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})$

Solution: We discuss two ways to solve the problem.

Using part (a): Note that we can solve this question simply by using part (a). We substitute $\mathbf{u} = \mathbf{A}^{\mathsf{T}} \mathbf{w}$ to obtain that $f(\mathbf{x}) = \mathbf{u}^{\mathsf{T}} \mathbf{x}$. Now from part (a), we conclude that

$$\frac{\partial(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{\partial\mathbf{x}} = \frac{\partial\mathbf{u}^{\mathsf{T}}\mathbf{x}}{\partial\mathbf{x}} = \mathbf{u}^{\mathsf{T}} = \mathbf{w}^{\mathsf{T}}\mathbf{A} \quad and \quad \nabla_{\mathbf{x}}(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = \left(\frac{\partial(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{\partial\mathbf{x}}\right)^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}}\mathbf{w}.$$

Using the formula (2): The idea is to use $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x}$, and apply equation (2). Using the fact that $\mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i=1}^{d} \sum_{j=1}^{d} w_i A_{ij} x_j$, we find that

$$\frac{\partial f}{\partial x_j} = \frac{\partial \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j}{\partial x_j} = \frac{\partial \sum_{j=1}^d x_j (\sum_{i=1}^d A_{ij} w_i)}{\partial x_j} = \sum_{i=1}^d A_{ij} w_i = \sum_{i=1}^d A_{ji}^{\mathsf{T}} w_i = (\mathbf{A}^{\mathsf{T}} \mathbf{w})_j,$$

where in the last step we have used equation (10). Consequently, we have

$$\frac{\partial (\mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \left[(\mathbf{A}^{\mathsf{T}} \mathbf{w})_1, (\mathbf{A}^{\mathsf{T}} \mathbf{w})_2, \dots, (\mathbf{A}^{\mathsf{T}} \mathbf{w})_d \right] = (\mathbf{A}^{\mathsf{T}} \mathbf{w})^{\mathsf{T}} = \mathbf{w}^{\mathsf{T}} \mathbf{A},$$

and

$$\nabla_{\mathbf{x}}(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = \left(\frac{\partial(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{\partial\mathbf{x}}\right)^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}}\mathbf{w}.$$

(c) $\frac{\partial (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{w}}$ and $\nabla_{\mathbf{w}} (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})$

Solution: We discuss two ways to solve the problem.

Using part (a) and (b): Note that we can solve this question simply by using part (a) and (b). We have $(\mathbf{w}^{\top} \mathbf{A} \mathbf{x}) = (\mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{w})$, since for a scalar α , we have $\alpha = \alpha^{\top}$. And in part (b), reversing the roles of \mathbf{x} and \mathbf{w} , we obtain that

$$\frac{\partial \mathbf{w}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{w}} = \frac{\partial \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{w}}{\partial \mathbf{w}} = \mathbf{x}^{\top} \mathbf{A}^{\top} \quad and \quad \nabla_{\mathbf{w}} (\mathbf{w}^{\top} \mathbf{A} \mathbf{x}) = \left(\frac{\partial \mathbf{w}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{w}}\right)^{\top} = \mathbf{A} \mathbf{x}.$$

Using the formula (2) Using a similar idea as in the previous part, we have

$$\frac{\partial f}{\partial w_i} = \frac{\partial \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j}{\partial w_i} = \frac{\partial \sum_{i=1}^d w_i (\sum_{j=1}^d A_{ij} x_j)}{\partial w_i} = \sum_{j=1}^d A_{ij} x_j = (\mathbf{A}\mathbf{x})_i,$$

where in the last step we have used equation (9). Consequently, we have

$$\frac{\partial (\mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x})}{\partial \mathbf{w}} = \left[(\mathbf{A} \mathbf{x})_1, (\mathbf{A} \mathbf{x})_2, \dots, (\mathbf{A} \mathbf{x})_d \right] = (\mathbf{A} \mathbf{x})^{\mathsf{T}} = \mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}},$$

and

$$\nabla_{\mathbf{w}}(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = \left(\frac{\partial(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{\partial\mathbf{w}}\right)^{\mathsf{T}} = (\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}\mathbf{x}.$$

(d) $\frac{\partial (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})}{\partial \mathbf{A}}$ and $\nabla_{\mathbf{A}} (\mathbf{w}^{\top} \mathbf{A} \mathbf{x})$

Solution:

Using the formula (4): We use $y = \mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x}$ and apply the formula (4). We have $\mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i=1}^{d} \sum_{j=1}^{d} w_i A_{ij} x_j$ and hence

$$\left[\frac{\partial(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{\partial\mathbf{A}}\right]_{ij} = \frac{\partial(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{\partial A_{ji}} = w_j x_i = (\mathbf{x}\mathbf{w}^{\mathsf{T}})_{ij}.$$

Consequently, we have

$$\frac{\partial (\mathbf{w}^{\mathsf{T}} \mathbf{A} \mathbf{x})}{\partial \mathbf{A}} = [(\mathbf{x} \mathbf{w}^{\mathsf{T}})_{ij}] = \mathbf{x} \mathbf{w}^{\mathsf{T}},$$

and thereby $\nabla_A(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = \mathbf{w}\mathbf{x}^{\mathsf{T}}$.

(e)
$$\frac{\partial (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x})}{\partial \mathbf{x}}$$
 and $\nabla_{\mathbf{x}} (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x})$

Solution:

We provide two ways to solve this problem.

Using the formula (2): We have $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i=1}^{d} \sum_{j=1}^{d} x_i A_{ij} x_j$. For any given index ℓ , we have

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = A_{\ell \ell} x_{\ell}^2 + x_{\ell} \sum_{j \neq \ell} (A_{j\ell} + A_{\ell j}) x_j + \sum_{i \neq \ell} \sum_{j \neq \ell} x_i A_{ij} x_j.$$

Thus we have

$$\frac{\partial \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\partial x_{\ell}} = 2A_{\ell\ell} x_{\ell} + \sum_{j \neq \ell} (A_{j\ell} + A_{\ell j}) x_j = \sum_{j=1}^d (A_{j\ell} + A_{\ell j}) x_j = ((\mathbf{A}^{\mathsf{T}} + \mathbf{A}) \mathbf{x})_{\ell}.$$

And consequently

$$\begin{aligned} \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} &= \left[\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial x_1}, \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial x_2}, \dots, \frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial x_d} \right] \\ &= \left[((\mathbf{A}^{\top} + \mathbf{A}) \mathbf{x})_1, ((\mathbf{A}^{\top} + \mathbf{A}) \mathbf{x})_2, \dots, ((\mathbf{A}^{\top} + \mathbf{A}) \mathbf{x})_d \right] \\ &= ((\mathbf{A}^{\top} + \mathbf{A}) \mathbf{x})^{\top} \\ &= \mathbf{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top}), \end{aligned}$$

and hence
$$\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = \left[\frac{\partial(\mathbf{x}^{\top}\mathbf{A}\mathbf{x})}{\partial \mathbf{x}}\right]^{\top} = (\mathbf{A} + \mathbf{A}^{\top})\mathbf{x}.$$

Using the product rule: Let

$$g(\mathbf{x}) = \mathbf{x},$$
$$h(\mathbf{x}) = \mathbf{A}\mathbf{x}.$$

We have that

$$\frac{dg(\mathbf{x})}{d\mathbf{x}} = \mathbf{I},$$
$$\frac{dh(\mathbf{x})}{d\mathbf{x}} = \mathbf{A}.$$

The product rule says that

$$\frac{d(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})}{d\mathbf{x}} = \frac{d(g(\mathbf{x})^{\mathsf{T}}h(\mathbf{x}))}{d\mathbf{x}} = g(\mathbf{x})^{\mathsf{T}}\frac{dh(\mathbf{x})}{d\mathbf{x}} + h(\mathbf{x})^{\mathsf{T}}\frac{dg(\mathbf{x})}{d\mathbf{x}}$$
$$= \mathbf{x}^{\mathsf{T}}\mathbf{A} + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{I}$$
$$= \mathbf{x}^{\mathsf{T}}(\mathbf{A} + \mathbf{A}^{\mathsf{T}}),$$

and hence $\nabla_x(x^\top A x) = (A + A^\top) x$

(f) $\nabla_{\mathbf{x}}^2(\mathbf{x}^{\top}\mathbf{A}\mathbf{x})$

Solution:

Using the formula (8): A straight forward computation yields that

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = A_{ij} + A_{ji}$$

and hence

$$\nabla^2 f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right] = \left[(A_{ij} + A_{ji})\right] = \mathbf{A} + \mathbf{A}^\top.$$