1 Back to Basics: Linear Algebra

Let $X \in \mathbb{R}^{m \times n}$. We do not assume that X has full rank.

(a) Give the definition of the rowspace, columnspace, and nullspace of X.

Solution: The rowspace is the span (or the set of all linear combinations) of the rows of X, the columnspace is the span of the columns of X, also known as $\text{Range}(X)$, and the nullspace is the set of vectors v such that $Xv = 0$, also known as $\mathcal{N}(X)$.

(b) Check (write an informal proof for) the following facts:

(a) The rowspace of X is the columnspace of X^\top, and vice versa.

Solution: The rows of X are the columns of X^\top, and vice versa.

(b) The nullspace of X and the rowspace of X are orthogonal complements.

Solution: v is in the nullspace of X if and only if $Xv = 0$, which is true if and only if for every row X_i of X, $\langle X_i, v \rangle = 0$. This is precisely the condition that v is perpendicular to each row of X. This means that v is in the nullspace of X if and only if v is in the orthogonal complement of the span of the rows of X, i.e. the orthogonal complement of the rowspace of X.

(c) The nullspace of $X^\top X$ is the same as the nullspace of X. *Hint: if v is in the nullspace of $X^\top X$, then $v^\top X^\top Xv = 0$.*

Solution: If v is in the nullspace of X, then $X^\top Xv = X^\top 0 = 0$. On the other hand, if v is in the nullspace of $X^\top X$, then $v^\top X^\top Xv = v^\top 0 = 0$. Then, $v^\top X^\top Xv = \|Xv\|_2^2 = 0$, which implies that $Xv = 0$.

(d) The columnspace and rowspace of $X^\top X$ are the same, and are equal to the rowspace of X. *Hint: Use the relationship between nullspace and rowspace.*

Solution: $X^\top X$ is symmetric, and by part (a),

$$\text{rowspace}(X^\top X) = \text{columnspace}((X^\top X)^\top) = \text{columnspace}(X^\top X)$$

By part (b), (c), then (b) again,

$$\text{rowspace}(X^\top X) = \text{nullspace}(X^\top X)^\perp = \text{nullspace}(X)^\perp = \text{rowspace}(X),$$

where $(\cdot)^\perp$ denotes orthogonal complement.
2 Probability Review

There are \(n \) archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a particular archer be defined to be the distance away from the center (the lower the score, the better, and 0 is the optimal score). Each archer’s score is independent of the others, and is distributed uniformly between 0 and 1. What is the expected value of the worst (highest) score?

(a) Define a random variable \(Z \) that corresponds with the worst (highest) score.

Solution: \(Z = \max\{X_1, \ldots, X_n\} \).

(b) Derive the Cumulative Distribution Function (CDF) of \(Z \).

Solution:

\[
F(z) = P(Z \leq z) = P(X_1 \leq z) \cdot \ldots \cdot P(X_n \leq z) = \prod_{i=1}^{n} P(X_i \leq z)
\]

\[
= \begin{cases}
0 & \text{if } z < 0, \\
\frac{z^n}{n} & \text{if } 0 \leq z \leq 1, \\
1 & \text{if } z > 1.
\end{cases}
\]

(c) Derive the Probability Density Function (PDF) of \(Z \).

Solution:

\[
f(z) = \frac{d}{dz} F(z) = \begin{cases}
\frac{n z^{n-1}}{n} & \text{if } 0 \leq z \leq 1, \\
0 & \text{otherwise}.
\end{cases}
\]

(d) Calculate the expected value of \(Z \).

Solution:

\[
E[Z] = \int_{-\infty}^{\infty} z f(z) \, dz = \int_{0}^{1} z n z^{n-1} \, dz = n \int_{0}^{1} z^n \, dz = \frac{n}{n + 1}.
\]

3 Vector Calculus

1Good resources for matrix calculus are:

- The Matrix Cookbook: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- Khan Academy: https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives
- YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7
Below, \(x \in \mathbb{R}^d \) means that \(x \) is a \(d \times 1 \) column vector with real-valued entries. Likewise, \(A \in \mathbb{R}^{d \times d} \) means that \(A \) is a \(d \times d \) matrix with real-valued entries. In this course, we will by convention consider vectors to be column vectors.

Consider \(x, w \in \mathbb{R}^d \) and \(A \in \mathbb{R}^{d \times d} \). In the following questions, \(\frac{\partial}{\partial x} \) denotes the derivative with respect to \(x \), while \(\nabla_x \) denotes the gradient with respect to \(x \). Recall that \(\nabla_x f = \left(\frac{\partial f}{\partial x} \right)^\top \).

Solution: Let us first understand the definition of the derivative. Let \(f : \mathbb{R}^d \to \mathbb{R} \) denote a scalar function. Then the derivative \(\frac{\partial f}{\partial x} \) is an operator that can help find the change in function value at \(x \), up to first order, when we add a little perturbation \(\Delta \in \mathbb{R}^d \) to \(x \). That is,

\[
f(x + \Delta) = f(x) + \frac{\partial f}{\partial x} \Delta + o(\|\Delta\|)
\]

where \(o(\|\Delta\|) \) stands for any term \(r(\Delta) \) such that \(r(\Delta)/\|\Delta\| \to 0 \) as \(\|\Delta\| \to 0 \). An example of such a term is a quadratic term like \(\|\Delta\|^2 \). Let us quickly verify that \(r(\Delta) = \|\Delta\|^2 \) is indeed an \(o(\|\Delta\|) \) term.

As \(\|\Delta\| \to 0 \), we have

\[
r(\Delta)/\|\Delta\| = \frac{\|\Delta\|^2}{\|\Delta\|} = \|\Delta\| \to 0,
\]

thereby verifying our claim. As a rule of thumb, any term that has a higher-order dependence on \(\|\Delta\| \) than linear is \(o(\|\Delta\|) \) and is ignored to compute the derivative.

We call \(\frac{\partial f}{\partial x} \) the derivative of \(f \) at \(x \). Sometimes we use \(\frac{df}{dx} \) but we also use \(\partial \) to indicate that \(f \) may depend on some other variable too. (But to define \(\frac{\partial f}{\partial x} \), we study changes in \(f \) with respect to changes in only \(x \).)

Since \(\Delta \) is a column vector the vector \(\frac{\partial f}{\partial x} \) should be a row vector so that \(\frac{\partial f}{\partial x} \Delta \) is a scalar. The gradient of \(f \) at \(x \) is defined to be the transpose of this derivative. That is \(\nabla_x f = \left(\frac{\partial f}{\partial x} \right)^\top \).

We now write down some formulas that would be helpful to compute different derivatives in various settings where a solution via first principle might be hard to compute. We will also distinguish between the derivative, gradient, Jacobian, and Hessian in our notation.

1. Let \(f : \mathbb{R}^d \to \mathbb{R} \) denote a scalar function. Let \(x \in \mathbb{R}^d \) denote a vector and \(A \in \mathbb{R}^{d \times d} \) denote a matrix. We have

\[
\frac{\partial f}{\partial x} \in \mathbb{R}^{1 \times d}
\]

such that

\[
\frac{\partial f}{\partial x} = \begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_d}
\end{bmatrix}
\]

\[
\nabla_x f = \left(\frac{\partial f}{\partial x} \right)^\top = \begin{bmatrix}
\frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} \\
\vdots \\
\frac{\partial f}{\partial x_d}
\end{bmatrix}
\]

\[\text{Note that } r(\Delta) = \sqrt{\|\Delta\|} \text{ is not an } o(\|\Delta\|) \text{ term. Since for this case, } r(\Delta)/\|\Delta\| = 1/\sqrt{\|\Delta\|} \to \infty \text{ as } \|\Delta\| \to 0.\]
2. Let \(y : \mathbb{R}^{m \times n} \rightarrow \mathbb{R} \) be a scalar function defined on the space of \(m \times n \) matrices. Then its derivative is an \(n \times m \) matrix and is given by

\[
\frac{\partial y}{\partial \mathbf{B}} \in \mathbb{R}^{n \times m} \text{ such that } \left[\frac{\partial y}{\partial \mathbf{B}} \right]_{ij} = \frac{\partial y}{\partial B_{ji}}. \tag{4}
\]

3. For \(z : \mathbb{R}^d \rightarrow \mathbb{R}^k \) a vector-valued function; its derivative \(\frac{\partial z}{\partial x} \) is an operator such that it can help find the change in function value at \(x \), up to first order, when we add a little perturbation \(\Delta \) to \(x \):

\[
z(x + \Delta) = z(x) + \frac{\partial z}{\partial x} \Delta + o(\|\Delta\|). \tag{5}
\]

A formula for the same can be derived as

\[
J(z) = \frac{\partial z}{\partial x} \in \mathbb{R}^{k \times d} = \begin{bmatrix}
\frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} & \cdots & \frac{\partial z_1}{\partial x_d} \\
\frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} & \cdots & \frac{\partial z_2}{\partial x_d} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial z_k}{\partial x_1} & \frac{\partial z_k}{\partial x_2} & \cdots & \frac{\partial z_k}{\partial x_d}
\end{bmatrix}, \tag{6}
\]

that is \([J(z)]_{ij} = \frac{\partial z_i}{\partial x_j} \). \tag{7}

4. However, the Hessian of \(f \) is defined as

\[
H(f) = \nabla^2 f(x) = J(\nabla f)^T = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_d} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_d} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_d \partial x_1} & \frac{\partial^2 f}{\partial x_d \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_d^2}
\end{bmatrix}. \tag{8}
\]

For sufficiently smooth functions (when the mixed derivatives are equal), the Hessian is a symmetric matrix and in such cases (which cover a lot of cases in daily use) the convention does not matter.

5. The following linear algebra formulas are also helpful:

\[
(A\mathbf{x})_i = \sum_{j=1}^{d} A_{ij}x_j, \quad \text{and,} \tag{9}
\]

\[
(A^\top \mathbf{x})_i = \sum_{j=1}^{d} A_{ji}^\top x_j = \sum_{j=1}^{d} A_{ji}x_j. \tag{10}
\]

Derive the following derivatives.
Thus, we find that
\[\frac{\partial f}{\partial x_i} = \frac{\partial \sum_j w_j x_j}{\partial x_i} = w_i. \]

Using part (a) and (b):
\[\frac{\partial \mathbf{w}^\top \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \sum_j w_j x_j}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \sum_j w_j x_j}{\partial x_1}, & \frac{\partial \sum_j w_j x_j}{\partial x_2}, & \ldots, & \frac{\partial \sum_j w_j x_j}{\partial x_d} \end{bmatrix} = [w_1, w_2, \ldots, w_d] = \mathbf{w}^\top. \]

And \(\nabla_x (\mathbf{w}^\top \mathbf{x}) = \frac{\partial \mathbf{w}^\top \mathbf{x}}{\partial \mathbf{x}} = \mathbf{w}. \)

(b) \(\frac{\partial (\mathbf{w}^\top \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} \) and \(\nabla_x (\mathbf{w}^\top \mathbf{A} \mathbf{x}) \)

Solution: We discuss two ways to solve the problem.

Using part (a):
Note that we can solve this question simply by using part (a). We substitute \(\mathbf{u} = \mathbf{A}^\top \mathbf{w} \) to obtain that \(f(\mathbf{x}) = \mathbf{u}^\top \mathbf{x} \). Now from part (a), we conclude that
\[\frac{\partial (\mathbf{w}^\top \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^\top \mathbf{x}}{\partial \mathbf{x}} = \mathbf{u}^\top = \mathbf{w}^\top \mathbf{A} \quad \text{and} \quad \nabla_x (\mathbf{w}^\top \mathbf{A} \mathbf{x}) = \left(\frac{\partial (\mathbf{w}^\top \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} \right)^\top = \mathbf{A}^\top \mathbf{w}. \]

Using the formula (2):
The idea is to use \(f(\mathbf{x}) = \mathbf{w}^\top \mathbf{A} \mathbf{x} \), and apply equation (2). Using the fact that \(\mathbf{w}^\top \mathbf{A} \mathbf{x} = \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j \), we find that
\[\frac{\partial f}{\partial x_j} = \frac{\partial \sum_{i=1}^d \sum_{j=1}^d w_i A_{ij} x_j}{\partial x_j} = \frac{\partial \sum_{j=1}^d x_j (\sum_{i=1}^d A_{ij} w_i)}{\partial x_j} = \sum_{i=1}^d A_{ij} w_i = \sum_{i=1}^d A_{ji} w_i = (\mathbf{A}^\top \mathbf{w})_j, \]
where in the last step we have used equation (10). Consequently, we have
\[\frac{\partial (\mathbf{w}^\top \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} = \begin{bmatrix} (\mathbf{A}^\top \mathbf{w})_1, & (\mathbf{A}^\top \mathbf{w})_2, & \ldots, & (\mathbf{A}^\top \mathbf{w})_d \end{bmatrix} = (\mathbf{A}^\top \mathbf{w})^\top = \mathbf{w}^\top \mathbf{A}, \]
and
\[\nabla_x (\mathbf{w}^\top \mathbf{A} \mathbf{x}) = \left(\frac{\partial (\mathbf{w}^\top \mathbf{A} \mathbf{x})}{\partial \mathbf{x}} \right)^\top = \mathbf{A}^\top \mathbf{w}. \]

(c) \(\frac{\partial (\mathbf{w}^\top \mathbf{A} \mathbf{x})}{\partial \mathbf{w}} \) and \(\nabla_w (\mathbf{w}^\top \mathbf{A} \mathbf{x}) \)

Solution: We discuss two ways to solve the problem.

Using part (a) and (b):
Note that we can solve this question simply by using part (a) and (b). We have \((\mathbf{w}^\top \mathbf{A} \mathbf{x}) = (\mathbf{x}^\top \mathbf{A}^\top \mathbf{w}) \), since for a scalar \(\alpha \), we have \(\alpha = \alpha^\top \). And in part (b), reversing the roles of \(\mathbf{x} \) and \(\mathbf{w} \), we obtain that
\[\frac{\partial \mathbf{w}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{w}} = \frac{\partial \mathbf{x}^\top \mathbf{A}^\top \mathbf{w}}{\partial \mathbf{w}} = \mathbf{x}^\top \mathbf{A}^\top \quad \text{and} \quad \nabla_w (\mathbf{w}^\top \mathbf{A} \mathbf{x}) = \left(\frac{\partial \mathbf{w}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{w}} \right)^\top = \mathbf{A} \mathbf{x}. \]
Using the formula (2) Using a similar idea as in the previous part, we have
\[
\frac{\partial f}{\partial w_i} = \frac{\partial \sum_{j=1}^d w_j A_{ij} x_j}{\partial w_i} = \frac{\partial \sum_{j=1}^d w_j (\sum_{j=1}^d A_{ij} x_j)}{\partial w_i} = \sum_{j=1}^d A_{ij} x_j = (\mathbf{A} x)_i,
\]
where in the last step we have used equation (9). Consequently, we have
\[
\frac{\partial (\mathbf{w}^\top \mathbf{A} x)}{\partial \mathbf{w}} = \left[(\mathbf{A} x)_1, (\mathbf{A} x)_2, \ldots, (\mathbf{A} x)_d \right] = (\mathbf{A} x)^\top = \mathbf{x}^\top \mathbf{A}^\top,
\]
and
\[
\nabla_w (\mathbf{w}^\top \mathbf{A} x) = \left(\frac{\partial (\mathbf{w}^\top \mathbf{A} x)}{\partial \mathbf{w}} \right)^\top = (\mathbf{x}^\top \mathbf{A}^\top)^\top = \mathbf{A} x.
\]

(d) \(\frac{\partial (\mathbf{w}^\top \mathbf{A} x)}{\partial \mathbf{A}} \) and \(\nabla_\mathbf{A} (\mathbf{w}^\top \mathbf{A} x) \)

Solution:

Using the formula (4): We use \(y = \mathbf{w}^\top \mathbf{A} x \) and apply the formula (4). We have \(\mathbf{w}^\top \mathbf{A} x = \sum_{j=1}^d \sum_{j=1}^d w_j A_{ij} x_j \) and hence
\[
\left[\frac{\partial (\mathbf{w}^\top \mathbf{A} x)}{\partial \mathbf{A}} \right]_{ij} = \frac{\partial (\mathbf{w}^\top \mathbf{A} x)}{\partial A_{ji}} = w_j x_i = (\mathbf{x}w)^\top_{ij}.
\]
Consequently, we have
\[
\frac{\partial (\mathbf{w}^\top \mathbf{A} x)}{\partial \mathbf{A}} = [(\mathbf{x}w)^\top_{ij}] = \mathbf{xw}^\top,
\]
and thereby \(\nabla_\mathbf{A} (\mathbf{w}^\top \mathbf{A} x) = \mathbf{xw}^\top \).

(e) \(\frac{\partial (\mathbf{x}^\top \mathbf{A} x)}{\partial \mathbf{x}} \) and \(\nabla_\mathbf{x} (\mathbf{x}^\top \mathbf{A} x) \)

Solution:

We provide two ways to solve this problem.

Using the formula (2): We have \(\mathbf{x}^\top \mathbf{A} x = \sum_{i=1}^d \sum_{j=1}^d x_i A_{ij} x_j \). For any given index \(\ell \), we have
\[
\mathbf{x}^\top \mathbf{A} x = A_{\ell \ell} x_\ell^2 + x_\ell \sum_{j \neq \ell} (A_{\ell j} + A_{j \ell}) x_j + \sum_{i \neq \ell} \sum_{j \neq \ell} x_i A_{ij} x_j.
\]
Thus we have
\[
\frac{\partial \mathbf{x}^\top \mathbf{A} x}{\partial x_\ell} = 2 A_{\ell \ell} x_\ell + \sum_{j \neq \ell} (A_{\ell j} + A_{j \ell}) x_j = \sum_{j=1}^d (A_{j \ell} + A_{\ell j}) x_j = ((\mathbf{A}^\top + \mathbf{A}) \mathbf{x})_\ell.
\]
And consequently

\[
\frac{\partial \mathbf{x}^\top \mathbf{Ax}}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial \mathbf{x}^\top \mathbf{Ax}}{\partial \mathbf{x}_1},
\frac{\partial \mathbf{x}^\top \mathbf{Ax}}{\partial \mathbf{x}_2},
\ldots,
\frac{\partial \mathbf{x}^\top \mathbf{Ax}}{\partial \mathbf{x}_d}
\end{bmatrix}
= \begin{bmatrix}
((\mathbf{A}^\top + \mathbf{A})\mathbf{x})_1,
((\mathbf{A}^\top + \mathbf{A})\mathbf{x})_2,
\ldots,
((\mathbf{A}^\top + \mathbf{A})\mathbf{x})_d
\end{bmatrix}
= ((\mathbf{A}^\top + \mathbf{A})\mathbf{x})^\top
= \mathbf{x}^\top (\mathbf{A} + \mathbf{A}^\top),
\]

and hence \(\nabla_x (\mathbf{x}^\top \mathbf{Ax}) = [\frac{\partial (\mathbf{x}^\top \mathbf{Ax})}{\partial \mathbf{x}}]^\top = (\mathbf{A} + \mathbf{A}^\top)\mathbf{x} \).

Using the product rule: Let

\[
g(x) = \mathbf{x}, \quad h(x) = \mathbf{Ax}.
\]

We have that

\[
\frac{dg(x)}{dx} = \mathbf{I}, \quad \frac{dh(x)}{dx} = \mathbf{A}.
\]

The product rule says that

\[
\frac{d(\mathbf{x}^\top \mathbf{Ax})}{dx} = \frac{d(g(x)^\top h(x))}{dx} = g(x)^\top \frac{dh(x)}{dx} + h(x)^\top \frac{dg(x)}{dx}
= \mathbf{x}^\top \mathbf{A} + \mathbf{x}^\top \mathbf{A}^\top \mathbf{I}
= \mathbf{x}^\top (\mathbf{A} + \mathbf{A}^\top),
\]

and hence \(\nabla_x (\mathbf{x}^\top \mathbf{Ax}) = (\mathbf{A} + \mathbf{A}^\top)\mathbf{x} \)

(f) \(\nabla^2_x (\mathbf{x}^\top \mathbf{Ax}) \)

Solution:

Using the formula (8): A straight forward computation yields that

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} = A_{ij} + A_{ji}
\]

and hence

\[
\nabla^2 f(\mathbf{x}) = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_i \partial x_j}
\end{bmatrix} = [(A_{ij} + A_{ji})] = \mathbf{A} + \mathbf{A}^\top.
\]