
CS 189/289A Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik DIS1

1 Maximum Likelihood Estimation
Maximum Likelihood Estimation (MLE) is a method of estimating the parameters of a statistical
model given observations, by finding the parameters that maximize the likelihood of the observa-
tions. Concretely, given observations y1, y2, . . . , yn distributed according to pθ(y1, y2, . . . , yn) (here
pθ can be a probability mass function for discrete observations or a density for continuous obser-
vations), the likelihood function is defined as L(θ) = pθ(y1, y2, . . . , yn) and the MLE is

θ̂MLE = arg max
θ

L(θ).

We often make the assumption that the observations are independent and identically distributed or
iid, in which case pθ(y1, y2, . . . , yn) = pθ(y1) · pθ(y2) · · · · · pθ(yn).

(a) Your friendly TA recommends maximizing the log-likelihood ℓ(θ) = log L(θ) instead of L(θ).
Why does this yield the same solution θ̂MLE? Why is it easier to solve the optimization problem
for ℓ(θ) in the iid case? Given the observations y1, y2, . . . , yn, write down both L(θ) and ℓ(θ) for

the Gaussian fθ(y) = 1
√

2πσ2
e
−(y−µ)2

2σ2 with θ = (µ, σ).

Solution: As the log is strictly monotonically increasing, maximizing ℓ(θ) = log L(θ) and
L(θ) will yield the same solution. Concretely, if θ∗ is a unique maximum of L(θ), we have
L(θ) < L(θ∗) for all θ , θ∗ in the parameter space and therefore due to strict monotonicity of
the log, ℓ(θ) = log L(θ) < log L(θ∗) = ℓ(θ∗), which means θ∗ is also a unique maximum of ℓ(θ).

In the iid case, the log-likelihood decomposes into a sum

ℓ(θ) =
n∑

i=1

log fθ(yi)

and it is often easier to optimize over these sums rather than products:

Numerically: There are special algorithms like stochastic gradient descent available for sums
that you will learn about later in lecture. Another reason is that forming the product of many
probabilities will yield a very small number and it is easy to generate a floating point underflow
this way. On the other hand, adding the logs of probabilities is a more stable operation because
the partial sums stay in a reasonable range.

Analytically: Usually it is easier to compute the gradient of ℓ(θ) than for L(θ). As an example,
consider the case of a Gaussian distribution:

The likelihood function is

L(θ) =
(

1
2πσ2

)n/2

· e−
∑n

i=1(yi−µ)
2

2σ2 .
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Taking logs yields

ℓ(θ) =
n∑

i=1

log fθ(yi) = −
n
2

log(2π) −
n
2

logσ2 −
1

2σ2

n∑
i=1

(yi − µ)2

which is much easier to minimize than L(θ).

(b) The Poisson distribution is fλ(y) = λye−λ
y! . Let Y1,Y2, . . . ,Yn be a set of independent and iden-

tically distributed random variables with Poisson distribution with parameter λ. Find the joint
distribution of Y1,Y2, . . . ,Yn. Find the maximum likelihood estimator of λ as a function of
observations y1, y2, . . . , yn.

Solution:
The joint probability mass function is the product of the probability mass functions of all n
independent variables yi,

pθ(y1, y2, . . . , yn) =
∏n

i=1
λyi e−λ

yi!
.

The log likelihood will thus be ℓ(λ) =
∑n

i=1(yi log(λ) − λ − log
(
yi!

)
)

We find the maximum by finding the derivative and setting it to 0:

ℓ′(λ) = (
∑n

i=1
yi
λ

) − n = 0. Hence, the estimate should be λ̂ =
∑n

i=1 yi

n = Ȳ , which is the mean of
the observations.
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2 Independence and Multivariate Gaussians
As described in lecture, a covariance matrix Σ ∈ RN×N for a random variable X ∈ RN with the
following values, where cov(Xi, X j) = E[(Xi − µi)(X j − µ j)] is the covariance between the i-th and
j-th elements of the random vector X:

Σ =


cov(X1, X1) ... cov(X1, Xn)

... ...

cov(Xn, X1) ... cov(Xn, Xn)

 . (1)

Recall that the density of an N dimensional Multivariate Gaussian Distribution N(µ,Σ) is defined
as follows when Σ is positive definite:

f (x) =
1√

(2π)N |Σ|
e−

1
2 (x−µ)⊤Σ−1(x−µ). (2)

Here, |Σ| denotes the determinant of the matrix Σ.

(a) Consider the random variables X and Y in R with the following conditions.

(i) X and Y can take values {−1, 0, 1}.

(ii) When X is 0, Y takes values 1 and -1 with equal probability ( 1
2 ). When Y is 0, X takes

values 1 and -1 with equal probability (1
2 ).

(iii) Either X is 0 with probability (1
2 ), or Y is 0 with probability (1

2 ).

Are X and Y uncorrelated? Are X and Y independent? Prove your assertions. Hint: Write
down the joint probability of (X,Y) for each possible pair of values they can take.

Solution: Essentially, there are 4 possible points (X, Y) can be, all with equal probabil-
ity ( 1

4 ): {(0, 1), (0,−1), (1, 0), (−1, 0)}, If graphed onto the Cartesian Plane, these point form
”crosshairs”.

To show that X and Y are uncorrelated, we need to prove:

E[(X − µX)(Y − µY)] = E[X − µX]E[Y − µY]

E[XY] = E[X]E[Y] = 0

Since, for µX and µY , we see that

E[X] = E[Y] =
1
2
∗ 0 +

1
2
∗

(
1
2
+
−1
2

)
= 0
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Notice for that whenever X is nonzero, Y is zero (vice versa). Thus, E[XY] = 0 since one of
the terms is always zero, and we have shown that X and Y are uncorrelated. However, to show
that X and Y are independent, we must show that:

P(X|Y) = P(X)

Unfortunately, this is not the case. P(X = 0) = 1
2 , but P(X = 0|Y = 1) = 1. Thus, X and Y are

not independent.

(b) For X = [X1, · · · , Xn]⊤ ∼ N(µ,Σ), verify that if Xi, X j are independent (for all i , j), then Σ
must be diagonal, i.e., Xi, X j are uncorrelated.

Solution: Recall that if random variables Z,W are independent, we have E[ZY] = E[Z]E[Y].
Since the covariance E[(Xi − µi)(X j − µ j)] = E[Xi − µi]E[X j − µ j] = 0 · 0 is 0, it follows that the
pair of variables Xi, X j are uncorrelated.

(c) Let N = 2, µ =
00

, and Σ =
α ββ γ

. Suppose X =
X1

X2

 ∼ N(µ,Σ). Show that X1, X2 are

independent if β = 0. Recall that two continuous random variables W,Y with joint density
fW,Y and marginal densities fW , fY are independent if fW,Y(w, y) = fW(w) fY(y).

Solution: Recall that the marginal density of two jointly Gaussian random variables is also
Gaussian. In particular, we have that X1 ∼ N(µ1, α) and X2 ∼ N(µ2, γ). Let’s denote the
marginal densities as fX1(·) and fX2(·).

Since β = 0, we may compute the inverse Σ−1 =

α−1 0
0 γ−1

.
Let’s write out the joint density of X1, X2:

fX1,X1(x1, x2) =
1√

(2π)N |Σ|
e−

1
2 (x−µ)⊤Σ−1(x−µ)

=
1√

(2π)2αγ
e−

1
2 (α−1(x1−µ1)2+γ−1(x2−µ2)2)

=
1

√
(2π)α

e−
(x1−µ1)2

2α ·
1√

(2π)γ
e−

(x2−µ2)2

2γ

= fX1(x1) · fX2(x2)

This proves that X1, X2 are independent if β = 0. Note that we don’t need to verify that fX1(x1)
and fX2(x2) are properly normalized (i.e. integrate to 1), since we can always shift around
constant factors to ensure that this is the case.

(d) Consider a data point x drawn from an N-dimensional zero mean Multivariate Gaussian dis-
tribution N(0,Σ), as shown above. Assume that Σ−1 exists. Prove that there exists a matrix
A ∈ RN×N such that x⊤Σ−1x = ∥Ax∥22 for all vectors x. What is the matrix A?

Solution: Use the Spectral Theorem to decompose Σ into a product involving the following:
an orthonormal matrix Q of orthonormal eigenvectors vi ∀i ∈ [1...N] and a diagonal matrix D
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with eigenvalues λi ∀i ∈ [1...N] along the diagonal. Note that all the eigenvalues are strictly
positive since Σ is positive definite (it is a covariance matrix and Σ−1 exists). Hence, we may
write

Σ = QDQ⊤,

and, therefore,

Σ−1 = (QDQ⊤)−1 = (Q⊤)−1D−1Q−1 = QD−1Q⊤.

This is because orthonormal matrices satisfy Q−1 = Q⊤.

Note that if the matrix D has values λi along its diagonal, then D−1 has values 1
λi

along its
diagonal. Once again, since Σ was positive definite, the reciprocal 1

λi
exists (each λi > 0).

Now, we can decompose D−1 into its square-root by defining S as a diagonal matrix with
diagonal values 1

√
λi

. You can quickly verify that S S = D−1 and that S ⊤ = S . Thus, we have,

Σ−1 = QD−1Q⊤ = QS S Q⊤ = QS S ⊤Q⊤ (3)
Σ−1 = A⊤A, (4)

where we let A = (QS )⊤. Therefore,

x⊤Σ−1x = x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥22. (5)

Note that A is not necessarily unique, however, since, if A⊤A = Σ−1, then (QA)⊤QA =
AT QT QA = AT (I)A = AT A = Σ−1 as well for any orthonormal Q.
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3 Least Squares (using vector calculus)

(a) In ordinary least-squares linear regression, we typically have n > d so that there is no w such
that Xw = y (these are typically overdetermined systems — too many equations given the
number of unknowns). Hence, we need to find an approximate solution to this problem. The
residual vector will be r = Xw − y and we want to make it as small as possible. The most
common case is to measure the residual error with the standard Euclidean ℓ2-norm. So the
problem becomes:

min
w
∥Xw − y∥22

Where X ∈ Rn×d,w ∈ Rd, y ∈ Rn. Derive using vector calculus an expression for an optimal
estimate for w for this problem assuming X is full rank.

Solution: The work flow is as follows: We first find a critical point by setting the gradient to
0, then show that it is unique under the conditions in the question and finally that it is in fact a
minimizer.

Let us first find critical points wOLS such that the gradient is zero, i.e ∇w∥XwOLS − y∥22
∣∣∣
w=wOLS

=

0. In order to take the gradient, we expand the ℓ2-norm. First, note the following:

∇w(w⊤Bw) = (B + B⊤)w

∇w(w⊤b) = b

We start by expanding the ℓ2-norm:

∇w(Xw − y)T (Xw − y)
= ∇w((Xw)T (Xw) − (Xw)T (y) − yT (Xw) + yT y) Combine middle terms, identical scalars.
= ∇w(wT X⊤Xw − 2wT X⊤y + y⊤y) Apply two derivative rules above
= (X⊤X + X⊤X)w − 2X⊤y
= 2X⊤(Xw − y)

Having computed the gradient, we now require it to vanish at the critical point w = wOLS

∇w∥Xw − y∥22
∣∣∣
w=wOLS

= 2XT (XwOLS − y)

= 2X⊤XwOLS − 2X⊤y = 0
=⇒ X⊤XwOLS = X⊤y

Because X is full rank, XT X is invertible (see question (b)) and thus there is only one vector
which satisfies the last equation which reads: wOLS = (X⊤X)−1X⊤y. Therefore, there is only
one unique critical point.
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To show that this is the global minimizer, it suffices to show ∥Xw − y∥2 → ∞ for ∥w∥2 →
∞. Because X is full rank, the matrix X⊤X is positive definite and therefore we have the
eigendecomposition

X⊤X =
∑

i

λiv⊤i vi (6)

with eigenvalues λi > 0 and orthonormal eigenvectors vi and therefore by writing

w =
∑

i

µivi (7)

we get

∥Xw − y∥22 = wT X⊤Xw − 2wT X⊤y + y⊤y

≥
∑

i

µ2
i λi − 2∥w∥2

∥∥∥X⊤y
∥∥∥

2
+ y⊤y =

∑
i

µ2
i λi − 2

∥∥∥µ∥∥∥
2

∥∥∥X⊤y
∥∥∥

2
+ y⊤y

≥ min(λ1, . . . , λd) ·
∥∥∥µ∥∥∥2

2
− 2

∥∥∥µ∥∥∥
2

∥∥∥X⊤y
∥∥∥

2
+ y⊤y

(in the last step we used the Cauchy Schwarz inequality) where µ = (µ1, . . . , µd)⊤, and
∥∥∥µ∥∥∥

2
=

∥w∥2 because the vi are orthonormal. Therefore ∥Xw − y∥22 goes to ∞ as
∥∥∥µ∥∥∥

2
= ∥w∥2 → ∞,

which shows thatwOLS is the global minimizer of the loss.

(b) How do we know that X⊤X is invertible?

Solution: Matrix X is said to be full rank if n ≥ d and its columns are not linear combinations
of each other. In this case, X⊤X will be positive definite and therefore invertible. If X is not
full rank, at least one of the columns will be a linear combination of the other columns. In this
case, the rank of X will be less than n and X⊤X will not be invertible.

In this question, we know that X has full rank, so if we can show that the rank of X is equivalent
to the rank of X⊤X , then X⊤X has full rank and is therefore invertible. Let us show the ranks
are equivalent using nullspaces. Suppose v is in the nullspace of X⊤X meaning X⊤Xv = 0:

X⊤Xv = 0
v⊤X⊤Xv = 0

(Xv)⊤(Xv) = 0
∥Xv∥22 = 0

Xv = 0 Because the only vector whose length is 0 is the 0 vector.

From this we can see that any v which is in nullspace of X⊤X also needs to be in the nullspace
of X. Since X and X⊤X have the same null space, then X⊤X should also be full rank and
therefore invertible.

(c) What should we do if X is not full rank?

Solution: (Basic idea) If X ∈ Rn×d is not full rank, there is no unique answer. As we will see
later, this is not an issue in ridge regression where we add a penalization to the loss function

DIS1,©UCB CS 189/289A, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 7



(thus change the loss function) which forces a unique solution. Another possibility is to use
the solution that minimizes the norm of w (in later lectures we will see why that might be a
good thing to do).

The minimum norm solution can be found by using the pseudo-inverse of X⊤X. The pseudo-
inverse of an arbitrary matrix X is denoted as X†. More intuitively, X† behaves most similarly
to the inverse: it is the matrix that, when multiplied by X, minimizes distance to the identity.
X† = argminW∈Rn×d∥XW − Im∥F .
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