
CS 189/289A Introduction to Machine Learning
Fall 2023 Jennifer Listgarten, Jitendra Malik DIS3

1 Logistic Regression
Assume that we have n i.i.d. data points (x1, y1), . . . , (xn, yn), where each yi is a binary label in
{0, 1}. We model the posterior probability as a Bernoulli distribution and the probability for each
class is the sigmoid function, i.e., p(y|x; w) = qy(1 − q)1−y, where q = s(w⊤x) and s(ζ) = 1

1+e−ζ is
the sigmoid function.

(a) Write out the likelihood and log likelihood functions.

Solution: The likelihood is:

L(w) =
n∏

i=1

p(y = yi|xi) =
n∏

i=1

qyi
i (1 − qi)1−yi .

The log likelihood is:

l(w) =
n∑

i=1

yi log
(
qi
)
+ (1 − yi) log

(
1 − qi

)
(b) Show that finding maximum likelihood estimate of w is equivalent to the following optimiza-

tion problem:

ŵ = argmin
w

 n∑
i=1

(1 − yi)w⊤xi + log
(
1 + exp

{
−w⊤xi

})
Solution: Now, we step through minimizing the negative log likelihood of the training data as
a function of the parameters w:

ŵ = argmin
w
−L(w) = argmin

w

− n∏
i=1

qyi
i (1 − qi)1−yi


=

argmin
w
−

n∑
i=1

yi log
(
qi
)
+ (1 − yi) log

(
1 − qi

)
=

argmin
w
−

n∑
i=1

yi log
(

qi

1 − qi

)
+ log

(
1 − qi

)
Since qi is the sigmoid function, we plug it in and simplify:
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ŵ = argmin
w

− n∑
i=1

yi log
(

qi

1 − qi

)
+ log

(
1 − qi

)
= argmin

w

− n∑
i=1

yi log

 1
1+exp{−w⊤xi}

1 − 1
1+exp{−w⊤xi}

 + log
(
1 −

1
1 + exp{−w⊤xi}

)
= argmin

w

−
n∑

i=1

yi log


1

1+exp{−w⊤xi}

1+exp{−w⊤xi}−1
1+exp{−w⊤xi}

 + log
(
1 + exp{−w⊤xi} − 1

1 + exp{−w⊤xi}

)
= argmin

w

− n∑
i=1

yi log
(

1
exp{−w⊤xi}

)
+ log

(
exp{−w⊤xi}

1 + exp{−w⊤xi}

)
= argmin

w

− n∑
i=1

yiw⊤xi − w⊤xi − log
(
1 + exp{−w⊤xi}

)
We bring in the negative sign to get:

ŵ = argmin
w

 n∑
i=1

(1 − yi)w⊤xi + log
(
1 + exp

{
−w⊤xi

})
(c) Comment on whether it is possible to find a closed form maximum likelihood estimate of w,

and describe an alternate approach.

Solution: Let us denote J(w) =
∑n

i=1(1 − yi)w⊤xi + log
(
1 + exp

{
−w⊤xi

})
. Notice that J(w) is

convex in w, so global minimum can be found. Note that s′(ζ) = s(ζ)(1 − s(ζ)). Now let us
take the gradient of J(w) w.r.t w:

∇wJ =
n∑

i=1

(1 − yi)xi −
exp

{
−w⊤xi

}
1 + exp{−w⊤xi}

xi =

n∑
i=1

(−1 + s(w⊤xi) − yi + 1)xi =

n∑
i=1

(si − yi)xi = X⊤(s − y)

where, si = s(w⊤xi), s = (s1, . . . , sn)⊤, y = (y1, . . . , yn)⊤ and X =


x⊤1
...

x⊤n

.
Unfortunately, we can’t get a closed form estimate for w by setting the derivative to zero, given
that the term s still contains w, and further-order derivatives will continue to carry expressions
over w. However, the convexity of this problem allows for first-order optimization algorithms,
such as gradient descent, to converge to a global minimum.
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2 Gaussian Classification
Let P(x | ωi) ∼ N(µi, σ

2) for a two-category, one-dimensional classification problem with classes
ω1 and ω2, P(ω1) = P(ω2) = 1/2, and µ2 > µ1.

(a) Find the optimal decision boundary and the corresponding decision rule.

Solution:
P(ω1 | x) = P(ω2 | x) ⇔

P(x | ω1) P(ω1)
P(x) = P(x | ω2) P(ω2)

P(x) ⇔

P(x | ω1) = P(x | ω2) ⇔

N(µ1, σ
2) = N(µ2, σ

2) ⇔

(x − µ1)2 = (x − µ2)2

This yields the Bayes decision boundary: x = µ1+µ2
2 .

The corresponding decision rule is, given a data point x ∈ R:

• if x < µ1+µ2
2 , then classify x in class 1

• otherwise, classify x in class 2

Note that this is the centroid method.

(b) The probability of misclassification (error rate) is:

Pe = P((misclassified as ω1) | ω2) P(ω2) + P((misclassified as ω2) | ω1) P(ω1).

Show that the probability of misclassification (error rate) associated with this decision rule is

Pe =
1
√

2π

∫ ∞

a
e−z2/2dz,

where a =
µ2 − µ1

2σ
.

Solution:

P((misclassified as ω1) | ω2) =
∫ µ1+µ2

2

−∞

1
√

2πσ
e−

(x−µ2)2

2σ2 dx

=

∫ −a

−∞

1
√

2π
e−

z2
2 dz

=
1
√

2π

∫ +∞

a
e−

z2
2 dz

= Pe,

where we have used the change of variables z = x−µ2
σ

, so that dz = 1
σ

dx. We also have

P((misclassified as ω2) | ω1) =
∫ +∞

µ1+µ2
2

1
√

2πσ
e−

(x−µ1)2

2σ2 dx
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=

∫ +∞

a

1
√

2π
e−

z2
2 dz

= Pe

Therefore:

P((misclassified as ω1) | ω2)P(ω2) + P((misclassified as ω2) | ω1)P(ω1) = Pe ·
1
2
+ Pe ·

1
2
= Pe

(c) What is the limit of Pe as σ goes to 0?

Solution: As σ goes to 0, a goes to∞, so the integral Pe goes to 0.

3 Overview of test sets, validation, and cross-validation
In this part, we discuss several issues having to do with test sets and the notions of validation and
cross-validation. Open this notebook in datahub and discuss the questions it contains.

Solution:

Test sets. The purpose of this notebook is to reflect about the concepts of test sets and validation.
Upon executing the first cells, you will see the following plot:

The function we are trying to approximate is shown in orange, and the sampled data (with noise),
in blue. Observe that the domain of the true function is the interval [−1, 1]. The next cell carries
out a subsampling of the data. This is the data that we assume someone is giving to us in order to
learn a function.
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Immediately after seeing this plot, we have a cell with routines to split the data into a training and a
test set, and to train a model. The model being trained in this cell is a fixed 5th-degree polynomial.
Observe that there is a line of code to be added in order to carry out the correct splitting of the data
into a training set and a test set. The line is trainIndices = np.logical not(testIndices).

The plot we obtain immediately after the execution of this cell shows us the true function we are
trying to learn, and the training and test errors. We also obtain this output from the execution of
the cell:

Training error: 3.6511493057865483

Test error: 3.9256574783857046

True error: 0.03422772128092661

We observe that the test and training errors are closed to each other. Our data is noisy; this explains
why in this case we see a test error bigger than the training error. We measure the true error with
respect to the underlying true function, so this error is not directly affected by the noise in the
training data.
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Immediately after this, we now sample the data with a bias: instead of random sampling, as hap-
pened before, the data given to us for training only contains values of x > 0.2. The following plots
show the data extracted this time, and the result of fitting our data. Regarding the code used in the
notebook, observe that the first time we fit the data, we built most routines by hand; in this case,
we make more significant use of existing APIs.

The last plot comes accompanied by this output:

Training error: 3.9543414420385754

Test error: 3.588770415447887

True error: 5436.558416632976

We observe the training and test errors close to each other, as happened before, but now the true
error is off-the-charts. The point here is that the data we used for training does not represent the
entire domain of our x values. In this case, we are trying to make predictions outside the interval
for which we had x values.
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Validation. The next plots deal with the concept of validation. The first plot shows the data we
will use during training. We use the function we introduced during our discussion of test sets. The
data is randomly sampled from the entire interval [−1, 1]

The code executed immediately after this plot does the following: it breaks the data given to us
into training set, validation set, and test set. We train polynomials of varying degrees to our data,
and we plot the training and validation errors we obtain for each:

This plot tells us that we should pick a degree equal to 2 because this yields the lowest validation
error. Using the code given in the notebook, we can compute the test error for a polynomial of
degree 2. We obtain 3.19.

Observe that validation is used as a methodological tool to pick a hyperparameter. Its drawback is
that it prevents us to use all our training data in our optimization routines that fit our models.

Cross-validation. If we reserve k points for our validation set, we have this tradeoff: a low k
means our validation set is too small and can’t yield a reliable estimate of the true error; if we set
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k too high, validation yields an excellent estimate of the true error, but our models will be trained
on little data.

Leave-one-out cross-validation is an example of cross-validation. This technique allows us to use
all data during training, but it requires us to train ∼ nm models, where n is the size of the training
set, and m is the number of evaluations of the hyperparameters. This is unrealistic, but the idea is
intriguing: we have a method that allows to train on the entire dataset while getting a handle on
the generalization error. One way to address this disadvantage of leave-one-out is K-fold cross-
validation. You will learn about this technique soon!
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