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1 Curse of Dimensionality in Nearest Neighbor Classification
We have a training set: (x(1), y(1)), . . . , (x(n), y(n)), where x(i) ∈ Rd. To classify a new point x, we can
use the nearest neighbor classifier:

class(x) = y(i∗) where x(i∗) is the nearest neighbor of x.

Assume any data point x that we may pick to classify is inside the Euclidean ball of radius 1,
i.e. ∥x∥2 ≤ 1. To be confident in our prediction, in addition to choosing the class of the nearest
neighbor, we want the distance between x and its nearest neighbor to be small, within some positive
ϵ:

∥x − x(i∗)∥2 ≤ ϵ for all ∥x∥2 ≤ 1. (1)

What is the minimum number of training points we need for inequality (1) to hold (assuming the
training points are well spread)? How does this lower bound depend on the dimension d?

Hint: Think about the volumes of the hyperspheres in d dimensions.
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2 Hierarchical Clustering for Phylogenetic Trees
A phylogenetic tree (or “evolutionary tree”) is way of representing the branching nature of evo-
lution. Early branches represent major divergences in evolution (for example, modern vertebrae
diverging from modern invertebrate), while later branches represent smaller branches in evolution
(for example, modern humans diverging from modern monkeys). An example is shown below.

Creating phylogenetic trees is a popular problem in computational biology. We are going to com-
bine what we know about clustering, decision trees, and unsupervised learning.

We start with all the samples (in this case, animals) in a single cluster and gradually divide it up.
This should remind you of decision trees! After k steps, we have at most 2k clusters. Since we
do not have labels, we need to find some way deciding how to split the samples (other than using
entropy).

We will use the same objective as in k-means clustering to determine how good our proposed
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clustering is:

∀i ≤ k, µi =
1
|S i|

∑
x j∈S i

x j

H(S 1, . . . , S k) =
k∑

i=1

∑
x j∈S i

|x j − µi|
2

At each iteration, we will split each cluster with more than one element into two clusters. The
algorithm terminates when everything is in its own cluster.

(a) Consider the following six animals and their two features. Create the resulting decision tree.

Animal Lifespan Wings
Dog 12 0

Human 80 0
Mouse 2 0

Elephant 60 0
Chicken 8 2
Turkey 10 2

(b) Prove that an optimal clustering on k + 1 < n clusters has an objective value that is at least as
small as that of the optimal clustering on k clusters.

(c) What is the value of H(S 1, . . . , S k) when k = n (the number of samples)?
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3 Surprise and Entropy
In this section, we will clarify the concepts of surprise and entropy. Recall that entropy is one of the
standards for us to split the nodes in decision trees until we reach a certain level of homogeneity.

(a) Suppose you have a bag of balls, all of which are black. How surprised are you if you take out
a black ball?

(b) With the same bag of balls, how surprised are you if you take out a white ball?

(c) Now we have 10 balls in the bag, each of which is black or white. Under what color distri-
bution(s) is the entropy of the bag minimized? And under what color distribution(s) is the
entropy maximized? Calculate the entropy in each case.
Recall: The entropy of an index set S is a measure of expected surprise from choosing an
element from S ; that is,

H(S ) = −
∑

C

pC log2(pC), where pC =
|i ∈ S : yi = C|

|S |
.

(d) Draw the graph of entropy H(pc) when there are only two classes C and D, with pD = 1 − pC.
Is the entropy function strictly concave, concave, strictly convex, or convex? Why? What is
the significance?
Hint: For the significance, recall the information gain.
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