
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS0

1 Vector Calculus
Below, x ∈ Rd means that x is a d × 1 column vector with real-valued entries. Likewise, A ∈ Rd×d

means that A is a d × d matrix with real-valued entries. In this course, we will by convention
consider vectors to be column vectors.

Consider x,w ∈ Rd and A ∈ Rd×d. In the following questions, ∇x denotes the gradient with respect
to x, which, by convention, is a column vector. See the appendix for more details on definitions
for vector calculus.

Calculate the following derivatives.

(a) ∇x(w⊤x)

Solution: We discuss two ways to solve the problem.

Using computation via first principle: We use f (x) = w⊤x. Then we have

f (x + ∆) = w⊤(x + ∆) = w⊤x + w⊤∆ = f (x) + w⊤∆.

Comparing with equation (1), we conclude that

∂w⊤x
∂x

= w⊤ and, thus, ∇x(w⊤x) =
(
∂w⊤x
∂x

)⊤
= w.

Using the formula (2): The idea is to use f = w⊤x and apply equation (2). Note that w⊤x =∑
j w jx j. Hence, we have

∂ f
∂xi
=
∂
∑

j w jx j

∂xi
= wi.

Thus, we find that

∂w⊤x
∂x

=
∂
∑

j w jx j

∂x
=

[
∂
∑

j w j x j

∂x1
,
∂
∑

j w j x j

∂x2
, . . . ,

∂
∑

j w j x j

∂xd

]
=

[
w1,w2, . . . ,wd

]
= w⊤.

And ∇x(w⊤x) = ∂w
⊤x
∂x
⊤
= w.

(b) ∇x(w⊤Ax)

Solution: We discuss three ways to solve the problem.
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Using part (a): Note that we can solve this question simply by using part (a). We substitute
u = A⊤w to obtain that f (x) = u⊤x. Now from part (a), we conclude that

∇x(w⊤Ax) = ∇x(u⊤x)
= u
= A⊤w.

Using computation via first principle: Taking f (x) = w⊤Ax and expanding, we have

f (x + ∆) = w⊤A(x + ∆) = w⊤Ax + w⊤A∆ = f (x) + w⊤A∆.

Comparing with equation (1), we conclude that

∂w⊤Ax
∂x

= w⊤A and ∇x(w⊤Ax) =
(
∂w⊤Ax
∂x

)⊤
= A⊤w.

Using the formula (2): The idea is to use f (x) = w⊤Ax, and apply equation (2). Using the
fact that w⊤Ax =

∑d
i=1

∑d
j=1 wiAi jx j, we find that

∂ f
∂x j
=
∂
∑d

i=1
∑d

j=1 wiAi jx j

∂x j
=
∂
∑d

j=1 x j(
∑d

i=1 Ai jwi)

∂x j
=

d∑
i=1

Ai jwi =

d∑
i=1

A⊤jiwi = (A⊤w) j,

where in the last step we have used equation (??). Consequently, we have

∂(w⊤Ax)
∂x

=
[
(A⊤w)1, (A⊤w)2, . . . , (A⊤w)d

]
= (A⊤w)⊤ = w⊤A,

and

∇x(w⊤Ax) =
(
∂(w⊤Ax)
∂x

)⊤
= A⊤w.

(c) ∇A(w⊤Ax)

Solution:
We discuss two approaches to solve this problem.

Using computation via first principle (6): Treating y = w⊤Ax as a function of A and expanding
with respect to change in A, we have

y(A + ∆) = w⊤(A + ∆)x = w⊤Ax + w⊤∆x.

Note that, for two matrices M ∈ Rm×n and N ∈ Rn×m, we have

trace(MN) = trace(NM).
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Since w⊤∆x is a scalar, we can write w⊤∆x = trace(w⊤∆x). And using the trace trick, we
obtain

w⊤∆x = trace(w⊤∆x) = trace(xw⊤∆).

Thus, we have

y(A + ∆) = w⊤(A + ∆)x = w⊤Ax + w⊤∆x = y(A) + trace(xw⊤∆),

which on comparison with equation (6) yields that

∂(w⊤Ax)
∂A

= xw⊤ and ∇A(w⊤Ax) =
[
∂(w⊤Ax)
∂A

]⊤
= wx⊤.

Using the formula (5): We use y = w⊤Ax and apply the formula (5). We have w⊤Ax =∑d
i=1

∑d
j=1 wiAi jx j and hence[

∂(w⊤Ax)
∂A

]
i j
=
∂(w⊤Ax)
∂A ji

= w jxi = (xw⊤)i j.

Consequently, we have

∂(w⊤Ax)
∂A

= [(xw⊤)i j] = xw⊤,

and thereby ∇A(w⊤Ax) = wx⊤.

(d) ∇x(x⊤Ax)

Solution:
We provide a few ways to solve this problem. Taking f (x) = x⊤Ax and expanding, we have

f (x + ∆) = (x + ∆)⊤A(x + ∆)
= x⊤Ax + ∆⊤Ax + x⊤A∆ + ∆⊤A∆
= f (x) + (x⊤A⊤ + x⊤A)∆ + O(∥∆∥2)

which yields

∂(x⊤Ax)
∂x

= x⊤(A⊤ + A) and,

∇x(x⊤Ax) =
[
∂(x⊤Ax)
∂x

]⊤
= (A + A⊤)x.

Using the chain rule, and parts (b) and (c): We have

∂(x⊤Ax)
∂x

=
∂w⊤Ax
∂x

(x)

∣∣∣∣∣∣∣
w=x

+
∂w⊤Ax
∂w

(w)

∣∣∣∣∣∣∣
w=x

= w⊤A|w=x + x⊤A⊤|w=x = x⊤(A + A⊤)

and thereby ∇x(x⊤Ax) =
[
∂(x⊤Ax)
∂x

]⊤
= (A + A⊤)x.
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Using the product rule: We have

∂(x⊤Ax)
∂x

= x⊤
∂(Ax)
∂x

+ (Ax)⊤
∂(x)
∂x
= x⊤A + x⊤A⊤ = x⊤(A + A⊤)

and thereby ∇x(x⊤Ax) =
[
∂(x⊤Ax)
∂x

]⊤
= (A + A⊤)x.

Using the formula (2): We have x⊤Ax =
∑d

i=1
∑d

j=1 xiAi jx j. For any given index ℓ, we have

x⊤Ax = Aℓℓx2
ℓ + xℓ

∑
j,ℓ

(A jℓ + Aℓ j)x j +
∑
i,ℓ

∑
j,ℓ

xiAi jx j.

Thus we have

∂x⊤Ax
∂xℓ

= 2Aℓℓxℓ +
∑
j,ℓ

(A jℓ + Aℓ j)x j =

d∑
j=1

(A jℓ + Aℓ j)x j = ((A⊤ + A)x)ℓ.

And consequently

∂x⊤Ax
∂x

=
[
∂x⊤Ax
∂x1
, ∂x

⊤Ax
∂x2
, . . . , ∂x

⊤Ax
∂xd

]
=

[
((A⊤ + A)x)1, ((A⊤ + A)x)2, . . . , ((A⊤ + A)x)d

]
= ((A⊤ + A)x)⊤

= x⊤(A + A⊤),

and hence ∇x(x⊤Ax) =
[
∂(x⊤Ax)
∂x

]⊤
= (A + A⊤)x.

(e) ∇2
x(x⊤Ax)

Solution:
We discuss two ways to solve this problem.

Using computation via first principle: We expand z(x) = ∇ f (x) = (A + A⊤)x and find that

z(x + ∆) = (A + A⊤)x + (A + A⊤)∆ = ∇ f (x) + (A + A⊤)∆.

Relating with equation (11), we obtain that ∇2 f (x) = A + A⊤.

Using the formula (10): A straight forward computation yields that

∂2 f
∂xi∂x j

= Ai j + A ji

and hence

∇2 f (x) =
 ∂2 f
∂xi∂x j

 = [(Ai j + A ji)] = A + A⊤.
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(f) Now let’s apply our identities derived above to a practical problem. Given a design matrix
X ∈ Rnxd and a label vector Y ∈ Rn, the ordinary least squares regression problem is

w∗ = argmin
w

1
2
||Xw − Y ||22

Using parts (a)–(e), derive a necessary condition for w∗. Note: We do not necessarily assume
X is full rank! Hint: A necessary condition for a minimum point of a function is that it is a
critical point, i.e. where the gradient is 0.

Solution: Let L(w) = 1
2 ||Xw − Y ||22. From calculus, we know a necessary condition of any

potential solution w∗ is that it must be a critical point of L, that is ∇wL(w∗) = 0. (It turns out,
this function is also convex, so this is also a sufficient condition). Thus, we have

∇wL(w) = ∇w
1
2
||Xw − Y ||22

= ∇w
1
2

(Xw − Y)⊤(Xw − Y)

=
1
2
∇w(w⊤X⊤Xw − 2Y⊤Xw + Y⊤Y)

=
1
2
∇w(w⊤X⊤Xw) − ∇w(Y⊤Xw) +

1
2
∇w(Y⊤Y)

Because Y⊤Y is constant w.r.t w, that term disappears from the gradient. Additionally, from
(e), and the fact that X⊤X is symmetric, we know

∇w(w⊤X⊤Xw) = (X⊤X + (X⊤X)⊤)w = 2X⊤Xw

Finally, we apply (b) to the second term to get

∇wL(w) = X⊤Xw − X⊤Y

Setting the gradient equal to zero we arrive at the necessary (and sufficient) condition

X⊤(Xw∗ − Y) = 0

Note: If X is full rank then X⊤X is invertible, and we can solve for w∗ exactly: w∗ =
(X⊤X)−1X⊤Y . Otherwise, there may be infinite possible w that satisfy the above condition

Note for the mathematically adventurous: The above condition says the residual error vec-
tor, Xw∗−y, is in the null space of X⊤. However, by the fundamental theorem of linear algebra,
we know that N(X⊤) ⊥ Range(X). Thus, the above condition is equivalent to saying that the
error vector of the optimal projection onto Range(X) is orthogonal to Range(X), hence the term
“orthogonal projection.”
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2 Back to Basics: Linear Algebra
Let X ∈ Rn×m. When we write ⊆, it means “is a subspace of.” We study a few important subspaces
in the theory of linear maps:

• The columnspace, also called the range or span, of X is Range(X) := {Xv : v ∈ Rm} ⊆ Rn.
Consists of all vectors in the span (the set of all linear combinations) of the columns of X.

• The rowspace is Row(X) := {X⊤v : v ∈ Rn} ⊆ Rm. Consists of all vectors in the span of the
rows of X.

• The nullspace, also called the kernel, of X is N(x) := {v ∈ Rm : Xv = 0} ⊆ Rm.

• The orthogonal complement of a subspace U in some vector space V is a subspace, denoted
U⊥, such that u ∈ U, v ∈ U⊥ =⇒ u · v = 0 and U and U⊥ together span V . (These facts
imply that dim U + dim U⊥ = dim V . It also implies that U⊥⊥ = U.) For example, in the
three-dimensional Euclidean space V = R3, if U is a plane through the origin, then U⊥ is a
line through the origin perpendicular to U.

For this problem we do not assume that X has full rank.

(a) Show that the following facts are true.

(i) Row(X) = Range(X⊤)

Solution: This follows immediately from the definitions: Row(X) = {X⊤v : v ∈ Rn} =

Range(X⊤). Intuitively, the rows of X are the columns of X⊤, and vice versa.
(ii) N(X)⊥ = Row(X).

Solution: The vector v is in the nullspace of X if and only if Xv = 0, which is true if
and only if ⟨Xi, v⟩ = 0 for every row Xi of X. That is, v is perpendicular to each row of
X. It follows that v is also perpendicular to any vector in the span of the rows of X, i.e.
any vector in the rowspace Row(X), which means v is in the orthogonal component of
Row(X), Row(X)⊥. We can write N(X) = Row(X)⊥ to express the fact that v is in the
nullspace of X if and only if v is in the orthogonal complement of the span of the rows of
X. This is equivalent to the statement N(X)⊥ = Row(X).

(iii) N(X⊤X) = N(X). Hint: if v ∈ N(X⊤X), then v⊤X⊤Xv = 0.

Solution: If v is in the nullspace of X (that is Xv = 0), then (X⊤X)v = X⊤(Xv) = X⊤0 = 0,
meaning v is also in the nullspace of X⊤X. Proving the reverse implication is a bit harder.
If v is in the nullspace of X⊤X, i.e. X⊤Xv = 0, then we have v⊤X⊤Xv = v⊤0 = 0. Observe
that v⊤X⊤Xv = ∥Xv∥22. It follows that ∥Xv∥22 = 0, which implies that Xv = 0, meaning v is
in the nullspace of X.
Here is an alternative way to prove the reverse implication: let z = Xv. Then, X⊤Xv =
0 =⇒ X⊤z = 0. This is true if and only if z is orthogonal to every column of X, i.e.,
z is orthogonal to Range(X). However, note that z = Xv is an element of Range(X); the
only vector that can be within a subspace and its orthogonal complement is 0. Thus,
z = Xv = 0, which implies that v ∈ N(X).
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(b) We now prove an important result of linear algebra, the rank-nullity theorem. Let Rank(X) =
dim Range(X) = dim Row(X) and Nullity(X) = dimN(X). (The fact that dim Range(X) =
dim Row(X)—that is, the dimension spanned by the rows equals the dimension spanned by
the columns—is itself a pretty important result, which you should always remember when you
hear the word “rank.”) The rank-nullity theorem says that for any X ∈ Rnxm,

Rank(X) + Nullity(X) = m.

Use the above results to prove this theorem. Hint: Use the orthogonal complement of the
nullspace to connect the rank to the nullity.

Solution: Since N(X) is a subspace of Rm, it has a complementary subspace N(X)⊥ with the
property that

dimN(X) + dimN(X)⊥ = m

From (ii) we know dimN(X)⊥ = dim Row(X) = Rank(X), yielding

Nullity(X) + Rank(X) = m.

Gilbert Strang has proposed that a collection of four facts be called “fundamental theorem of linear
algebra.” Two of these facts are the rank-nullity theorem, part (b), and the fact that the rowspace
is the orthogonal complement of the nullspace, part (a)(ii). The other two facts are related to the
singular value decomposition, which we’ll learn late in the semester.
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3 Eigenvalues
(a) Let A be an invertible matrix. Show that if v is an eigenvector of A with eigenvalue λ, then it

is also an eigenvector of A−1 with eigenvalue λ−1.

Solution: By definition, this means Av = λv. Then

v = A−1Av = A−1(λv) = λA−1v

We know λ , 0 since A is invertible, so division by λ is valid, giving λ−1v = A−1v.

(b) A symmetric matrix A is said to be positive semidefinite (PSD) (A ⪰ 0) if ∀v , 0, v⊤Av ≥ 0.
Show that A is PSD if and only if all of its eigenvalues are nonnegative.

Hint: Use the eigendecomposition of the matrix A.

Solution: Start with the reverse direction. We wish to prove: if the eigenvalues are nonnega-
tive, A is PSD.

The spectral theorem of A allows us to decompose a symmetric matrix A into UΛU⊤, where Λ
is diagonal with eigenvalues λi on the diagonal and U is orthonormal. Define z = U⊤v; since
U is orthonormal, there exists a one-to-one mapping between all z, v.

v⊤Av = v⊤(UΛU⊤)v = z⊤Λz = Σn
i=1λiz2

i

We assume λi ≥ 0, so ∀v, v⊤Av =
∑n

i=1 λiz2
i ≥ 0, which is the definition of PSD.

Next, take the forward direction. We wish to prove: if A is PSD, the eigenvalues are nonnega-
tive.

Since A is PSD, we know ∀x, x⊤Ax ≥ 0. So for all i, take the ith eigenvector ui for A. Then,

u⊤i Aui = u⊤i (λiui) = λiu⊤i ui = λi∥ui∥
2
2 ≥ 0

Since λi∥ui∥
2
2 ≥ 0 and ∥ui∥

2
2 ≥ 0, we must have that λi ≥ 0

(c) Let A be a PSD matrix. Show that its eigenvalues are equal to its singular values.

Solution: The eigenvalues of A are defined such that Av = λv. Multiplying both sides by A
tells us that λ2 is an eigenvalue of A2. Notice that, because A is symmetric, then A2 = AT A.
The singular values of A are equal to the square roots of the eigenvalues of AT A = A2, thus
the singular values are equal to |λ|, the absolute value of the eigenvalues. Since A is PSD, we
know that all the eigenvalues are nonnegative, thus we can remove the absolute value sign, and
thus the singular values are directly equal to the eigenvalues.
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4 Probability Review
There are n archers all shooting at the same target (bulls-eye) of radius 1. Let the score for a
particular archer be defined to be the distance away from the center (the lower the score, the better,
and 0 is the optimal score). Each archer’s score is independent of the others, and is distributed
uniformly between 0 and 1. What is the expected value of the worst (highest) score?

(a) Define a random variable Z equal to the worst (highest) score, in terms of random variables
that indicate each archer’s score.

Solution: Z = max{X1, . . . , Xn}.

(b) Derive the Cumulative Distribution Function (CDF) of Z. Hint: Recall the CDF of a random
variable Z is given by F(z) = P(Z ≤ z)

Solution:

F(z) = P(Z ≤ z) = P(X1 ≤ z) P(X2 ≤ z) · · · P(Xn ≤ z) =
n∏

i=1

P(Xi ≤ z)

Since each Xi is uniformly distributed between 0 and 1, P(Xi ≤ z) = z. Thus,

F(z) =


0 if z < 0,
zn if 0 ≤ z ≤ 1,
1 if z > 1.

(c) Let X be a non-negative random variable. The Tail-Sum formula states that

E[X] =
∫ ∞

0
P(X ≥ t) dt

Using both the Tail-Sum formula and the CDF of Z you derived, calculate the expected value
of Z. Hint: Write P(X ≥ t) in terms of the CDF of X.

Solution:

E[Z] =
∫ ∞

0
P(Z ≥ t) dt

=

∫ ∞

0
(1 − P(Z < t)) dt

=

∫ ∞

0
(1 − F(t)) dt

=

∫ 1

0
(1 − tn) dt +

∫ ∞

1
(1 − 1) dt

=
n

n + 1
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(d) Consider what happens to E[Z] as n→ ∞. Does this match your intuition?

Solution: E[Z] increases as n increases, and as n→ ∞, E[Z]→ 1. This makes intuitive sense
because increasing the number of archers increases the likelihood that more extreme values are
encountered, which causes the max to tend towards the positive extreme (in this case, Z = 1).
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5 Vector Calculus Appendix 1

Let us first understand the definition of the derivative. Let f : Rd → R denote a scalar function.
Then the derivative ∂ f

∂x is an operator that can help find the change in function value at x, up to first
order, when we add a little perturbation ∆ ∈ Rd to x. That is,

f (x + ∆) = f (x) +
∂ f
∂x
∆ + o(∥∆∥) (1)

where o(∥∆∥) stands for any term r(∆) such that r(∆)/∥∆∥ → 0 as ∥∆∥ → 0. An example of such a
term is a quadratic term like ∥∆∥2. Let us quickly verify that r(∆) = ∥∆∥2 is indeed an o(∥∆∥) term.
As ∥∆∥ → 0, we have

r(∆)
∥∆∥
=
∥∆∥2

∥∆∥
= ∥∆∥ → 0,

thereby verifying our claim. As a rule of thumb, any term that has a higher-order dependence on
∥∆∥ than linear is o(∥∆∥) and is ignored to compute the derivative.2

We call ∂ f
∂x the derivative of f at x. Sometimes we use d f

dx but we use ∂ to indicate that f may depend
on some other variable too. (But to define ∂ f

∂x , we study changes in f with respect to changes in x
only.)

Since ∆ is a column vector, the vector ∂ f
∂x should be a row vector so that ∂ f

∂x∆ is a scalar. So one way
to compute the derivative is to expand out f (x+∆) and guess the expression for the derivative. We
call this method computation via first principle.

The gradient of f at x is defined to be the transpose of this derivative. That is ∇ f (x) =
(
∂ f
∂x

)⊤
.

We now write down some formulas that would be helpful to compute different derivatives in various
settings where a solution via first principle might be hard to compute. We will also distinguish
between the derivative, gradient, Jacobian, and Hessian in our notation.

1. Let f : Rd → R denote a scalar function. Let x ∈ Rd denote the vector input to f . We have

∂ f
∂x
∈ R1×d such that

∂ f
∂x
=

[
∂ f
∂x1
,
∂ f
∂x2
, . . . ,

∂ f
∂xd

]
(2)

∇x f =
(
∂ f
∂x

)⊤
=



∂ f
∂x1
∂ f
∂x2
...
∂ f
∂xd


. (3)

1Good resources for matrix calculus are:

• The Matrix Cookbook: https://www.math.uwaterloo.ca/˜hwolkowi/matrixcookbook.pdf

• Wikipedia: https://en.wikipedia.org/wiki/Matrix_calculus

• Khan Academy:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives

• YouTube: https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7.

2Note that r(∆) =
√
∥∆∥ is not an o(∥∆∥) term. Since for this case, r(∆)/∥∆∥ = 1/

√
∥∆∥ → ∞ as ∥∆∥ → 0.
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2. Let y : Rm×n → R be a scalar function defined on the space of m × n matrices. Let B denote
the matrix input to f . Then, the derivative of f with respect to B is an n ×m matrix given by

∂y
∂B
∈ Rn×m such that

[
∂y
∂B

]
i j
=
∂y
∂B ji
, (4)

As in the vector case above, the gradient and derivative with respect to a matrix are also
transposes of each other. So, the gradient of f with respect to B is an m × n matrix given by

∇By =
(
∂y
∂B

)⊤
∈ Rm×n such that

[
∇By

]
i j =

∂y
∂Bi j
. (5)

An argument via first principle follows as:

y(B + ∆) = y(B) + trace
(
∂y
∂B
∆

)
+ o(∥∆∥). (6)

3. For z : Rd → Rk, a vector-valued function, its derivative ∂z
∂x is an operator that can help find

the change in function value at x, up to first order, when we add a little perturbation ∆ to x:

z(x + ∆) = z(x) +
∂z
∂x
∆ + o(∥∆∥). (7)

A formula for the same can be derived as

J(z) =
∂z
∂x
∈ Rk×d =



∂z1
∂x
∂z2
∂x
...
∂zk
∂x


=



∂z1
∂x1

∂z1
∂x2
. . . ∂z1

∂xd
∂z2
∂x1

∂z2
∂x2
. . . ∂z2

∂xd
...
...
. . .

...
∂zk
∂x1

∂zk
∂x2
. . . ∂zk

∂xd


(8)

That is,

[J(z)]i j =

[
∂z
∂x

]
i j
=
∂zi

∂x j
. (9)

4. The Hessian of f : Rd → R is the generalization of a second derivative and is defined as

H( f ) = ∇2 f (x) = J(∇ f )⊤ =



∂2 f
∂x2

1

∂2 f
∂x1∂x2

. . . ∂2 f
∂x1∂xd

∂2 f
∂x2∂x1

∂2 f
∂x2

2
. . . ∂2 f

∂x2∂xd

...
...

. . .
...

∂2 f
∂xd∂x1

∂2 f
∂xd∂x2

. . . ∂2 f
∂x2

d
.


(10)

A first principle definition is

∇ f (x + ∆) ≈ ∇ f (x) + ∇2 f (x)∆ (11)

or equivalently

∇ f (x + ∆) = ∇ f (x) + ∇2 f (x)∆ + o(∥∆∥).

For sufficiently smooth functions (when the mixed derivatives are equal), the Hessian is a
symmetric matrix. Most of the functions we cover in this class will have symmetric Hessians.
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