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1 Energy Function Motivation
Lots of generative models can be represented by probability distributions p(x | w) where x is
some data/input vector and w is a series of learnable parameters. In order to be a valid probability
distribution, we need ∫

p(x | w) dx = 1.

Consider an arbitrary function E(x,w). In practice, E(x,w) is modeled either through a neural
network or another architecture (with parameters w and input x). The exponential exp(−E(x,w))
is a non-negative quantity that can be viewed as an un-normalized probability distribution of x;
higher energy values correspond to lower probabilities.

We then define
p(x | w) =

1
Z(w)

exp(−E(x,w))

where
Z(w) =

∫
exp(−E(x,w)) dx.

(a) Given a dataset of i.i.d. samples D = {x1, x2, . . . , xN}, we would like to compute the log-
likelihood log p(D | w), so that we can calculate gradients later. In terms of E(xi,w) and Z(w),
what is the log-likelihood log p(D | w)?
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(b) From the above we can calculate

Ex∼pD[∇w log p(x | w)] = −Ex∼pD[∇wE(x,w)] − ∇w log Z(w),

since the samples xi are i.i.d. from some distribution pD. Note that the second term doesn’t
depend onD and only depends on the normalizing function Z(w).

Show that −∇w log Z(w) =
∫
∇wE(x,w)p(x | w) dx.

(c) The above shows that −∇w log Z(w) = Ex∼p(x|w)[∇wE(x,w)]. Use this result and the result from
part (a) to derive a simplified expression for Ex∼pD

[
∇w log p(x | w)

]
. The result you get will

form a basis for why we use Langevin sampling to help approximate this gradient.

(d) How can we use Langevin sampling to help approximate the gradient?
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2 (un-adjusted) Langevin Sampling

We’ll now go through a concrete example of applying Langevin sampling when the target dis-
tribution is Gaussian. We’ll analyze the convergence rate of this algorithm as well as the actual
distribution it converges to.

Recall that the Langevin update equation is given by

xt+1 = xt + η∇x log p(xt) +
√

2η · ϵt

where ϵt ∼ N(0, I), ∇x log p(xt) is a score function, and η > 0 is the step size.

This looks like a “noisy” version of gradient ascent where we add noise in every step. While
gradient ascent will always find a local maxima (given appropriate step sizes), this algorithm often
converges upon somewhere near a local maxima but due to the stochastic nature sometimes ends
up in smaller probability regions.

For the rest of this question, assume

f (x) =
1
2

(x − µ)⊤H(x − µ)

We’re going to apply Langevin sampling to this function to show that we eventually converge to a
sample from p(x) = exp(− f (x))

Z where Z =
∫

exp(− f (x)) dx. Note that p(x) is a Gaussian distribution
centered at µ with covariance matrix H−1.

(a) Derive ∇x log
(
p(x)
)
.

(b) Rewrite the score function using the gradient above. What is xt − µ in terms of x0 − µ?
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(c) What is the expectation of xt? What does this approach as t → ∞? Assume that the eigenvalues
of I − ηH are upperbounded in absolute value by 1 (i.e. η is set appropriately small).

(d) To simplify calculations, assume H = I (i.e. the covariance of p(x) is just the identity matrix).
What is the covariance of xt, i.e., E[(xt − µ)(xt − µ)⊤] as t → ∞? What do you notice about
this? As η→ 0 what does this approach?
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