
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS10

1 Energy Function Motivation
Lots of generative models can be represented by probability distributions p(x | w) where x is
some data/input vector and w is a series of learnable parameters. In order to be a valid probability
distribution, we need ∫

p(x | w) dx = 1.

Consider an arbitrary function E(x,w). In practice, E(x,w) is modeled either through a neural
network or another architecture (with parameters w and input x). The exponential exp(−E(x,w))
is a non-negative quantity that can be viewed as an un-normalized probability distribution of x;
higher energy values correspond to lower probabilities.

We then define
p(x | w) =

1
Z(w)

exp(−E(x,w))

where
Z(w) =

∫
exp(−E(x,w)) dx.

(a) Given a dataset of i.i.d. samples D = {x1, x2, . . . , xN}, we would like to compute the log-
likelihood log p(D | w), so that we can calculate gradients later. In terms of E(xi,w) and Z(w),
what is the log-likelihood log p(D | w)?

Solution:

log p(D | w) = log
n∏

i=1

p(xi | w) = log
n∏

i=1

1
Z(w)

exp(−E(xi,w)) =
n∑

i=1

[
−E(xi,w) − log

(
Z(w)
)]
.

(b) From the above we can calculate

Ex∼pD[∇w log p(x | w)] = −Ex∼pD[∇wE(x,w)] − ∇w log Z(w),

since the samples xi are i.i.d. from some distribution pD. Note that the second term doesn’t
depend onD and only depends on the normalizing function Z(w).

Show that −∇w log Z(w) =
∫
∇wE(x,w)p(x | w) dx.

Solution: Note that −∇w log Z(w) = −∇wZ(w)
Z(w) .

DIS10,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

The numerator is equal to

−∇w

∫
exp(−E(x,w)) dx = −

∫
∇wexp(−E(x,w)) dx =

∫
∇wE(x,w)exp(−E(x,w)) dx.

We commute integrals and gradients together.

Combining with the denominator gives

−∇w log Z(w) =
∫
∇wE(x,w)

exp(−E(x,w))
Z(w)

dx =
∫
∇wE(x,w)p(x | w) dx

.

(c) The above shows that −∇w log Z(w) = Ex∼p(x|w)[∇wE(x,w)]. Use this result and the result from
part (a) to derive a simplified expression for Ex∼pD

[
∇w log p(x | w)

]
. The result you get will

form a basis for why we use Langevin sampling to help approximate this gradient.

Solution: Combining (b) and (c) gives that

Ex∼pD[∇w log p(x | w)] = −Ex∼pD[∇wE(x,w)] + Ex∼p(x|w)[∇wE(x,w)].

We see that both terms in this expression are over the same expression, ∇wE(x,w), but over
different distributions. Furthermore, they are opposing in sign.

In regions where the model density—p(x | w)—exceeds the true data density—pD— the net
effect will be to increase the energy function and reduce the probability. Conversely, when the
data density exceeds the model density, the net effect will be to decrease the energy function
and increase the probability density. The two regions are equal when the data density equals
the model density, at which point the gradient is equal to 0.

(d) How can we use Langevin sampling to help approximate the gradient?

Solution: The first part of the gradient comes from our dataset and can be approximated as
an average of ∇wE(xi,w) given i.i.d. samples xi. The second term is something that must be
modeled, since we do not have access to the distribution p(x | w). Note that given an input x
and a sample w calculating ∇wE(x,w) is tractable (for example, assume E(x,w) is a neural net,
and then we can run back-propagation on it). The issue is getting a representative distribution
to sample these gradients from.

Langevin sampling helps us in the case where we want to approximate a target distribution
p(x | w) = −E(x,w)

Z(w) by starting with some x0 and an update equation. Running it for a long time
converges to a sample from the distribution p(x | w). We can repeat this process many times
to obtain a list of samples x ∼ p(x | w) and then evaluate ∇wE(x,w) for each of them to then
approximate Ex∼p(x|w)[∇wE(x,w)] through averaging.

In this case, Langevin sampling helps us deal with the distribution p(x | w) to help generate
samples from it to approximate gradients.

DIS10,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

2 (un-adjusted) Langevin Sampling

We’ll now go through a concrete example of applying Langevin sampling when the target dis-
tribution is Gaussian. We’ll analyze the convergence rate of this algorithm as well as the actual
distribution it converges to.

Recall that the Langevin update equation is given by

xt+1 = xt + η∇x log p(xt) +
√

2η · ϵt

where ϵt ∼ N(0, I), ∇x log p(xt) is a score function, and η > 0 is the step size.

This looks like a “noisy” version of gradient ascent where we add noise in every step. While
gradient ascent will always find a local maxima (given appropriate step sizes), this algorithm often
converges upon somewhere near a local maxima but due to the stochastic nature sometimes ends
up in smaller probability regions.

For the rest of this question, assume

f (x) =
1
2

(x − µ)⊤H(x − µ)

We’re going to apply Langevin sampling to this function to show that we eventually converge to a
sample from p(x) = exp(− f (x))

Z where Z =
∫

exp(− f (x)) dx. Note that p(x) is a Gaussian distribution
centered at µ with covariance matrix H−1.

(a) Derive ∇x log
(
p(x)
)
.

Solution: The score function can be simplified as follows

∇x log
(
p(x)
)
= −∇x f (x) − ∇x log(Z)

= −∇x f (x) − 0
= −H(x − µ)

Note that Z is a constant so the gradient is zero w.r.t. x.

(b) Rewrite the score function using the gradient above. What is xt − µ in terms of x0 − µ?

Solution: Let’s try unrolling the equation. It’s easier to work with the quantity xt − µ, so let’s
find an expression for that.

xt − µ = (xt−1 − µ) − ηH(xt−1 − µ) +
√

2ηϵt−1 = (I − ηH)(xt−1 − µ) +
√

2ηϵt−1.

Note that this is just a linear transformation of xt−1 − µ by the matrix I − ηH, with some
additional noise added.

Expanding for xt in terms of xt−2 gives

xt − µ = (I − ηH)
(
(I − ηH)(xt−2 − µ) +

√
2ηϵt−2

)
+
√

2ηϵt−1

DIS10,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

= (I − ηH)2(xt−2 − µ) + (I − ηH)
√

2ηϵt−2 +
√

2ηϵt−1.

We can see a pattern start to emerge. We will have a (I − ηH)t(x0 − µ) term combined with
noise terms that are weighted by successive powers of the matrix I − ηH. Writing this out in
terms of x0 gives

xt − µ = (I − ηH)t(x0 − µ) +
√

2η
t−1∑
i=0

(I − ηH)t−1−iϵi

(c) What is the expectation of xt? What does this approach as t → ∞? Assume that the eigenvalues
of I − ηH are upperbounded in absolute value by 1 (i.e. η is set appropriately small).

Solution:

E[xt − µ] = E[(I − ηH)t(x0 − µ) +
√

2η
t−1∑
i=0

(I − ηH)t−1−iϵi]

= (I − ηH)t(x0 − µ) +
√

2η
t−1∑
i=0

(I − ηH)t−1−iE[ϵi]

= (I − ηH)t(x0 − µ)

since the noise has mean 0. As t → ∞ this approaches 0 since the eigenvalues are bounded by
1 in absolute value. So E[xt − µ] = 0 =⇒ E[xt] = µ as t → ∞.

(d) To simplify calculations, assume H = I (i.e. the covariance of p(x) is just the identity matrix).
What is the covariance of xt, i.e., E[(xt − µ)(xt − µ)⊤] as t → ∞? What do you notice about
this? As η→ 0 what does this approach?

Solution: Using the expresion for xt − µ from part (b), we get that

E[(xt − µ)(xt − µ)⊤] = (I − ηI)t(x0 − µ)(x0 − µ)⊤(I − ηI)t + 2η
t−1∑
i=0

(I − ηI)t−1−iE[ϵiϵ⊤i](I − ηI)t−1−i.

The other terms vanish because E[(x0 − µ)ϵTi] = 0 and E[ϵiϵTj] = 0 for i , j. We also use the
fact that (I − ηI) is a symmetric matrix (i.e. (I − ηI)⊤ = (I − ηI). Using the fact that E[ϵiϵTi] = I
we can simplify the expression to

(I − ηI)t(x0 − µ)(x0 − µ)T (I − ηI)t + 2η
t−1∑
i=0

(I − ηI)2(t−1−i)

.

The term (I − ηI)t(x0 − µ)(x0 − µ)⊤(I − ηI)t → 0 as t → ∞.

To decompose the other summation, note that as t → ∞,

t−1∑
i=0

(I − ηI)2(t−1−i) =

∞∑
i=0

(I − ηI)2i = I
∞∑

i=0

(1 − η)2i.

DIS10,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

This sum is geometric with ratio (1 − η)2 and thus converges to 1
1−(1−η)2 .

Combining this with the above, we get that

2η
t−1∑
i=0

(I − ηI)2(t−1−i) ≈
2η

1 − (1 − η)2 I =
2η

2η − η2 =
2

2 − η
I

as t → ∞.

Thus, the covariance approaches 2
2−η I (overshoots it). Note that this is actually not equal to I

which is the expected covariance if converging to the distribution of p(x).

However, as η → 0, this approaches I as expected. This illustrates that our step size, η should
not be too large because then the distribution we converge to is not our approximate distribu-
tion. At the same time, we don’t want η to be too small because we can view this process as
noisy gradient descent and would like to sample less if possible for convergence guarantees.

DIS10,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

	Energy Function Motivation
	(un-adjusted) Langevin Sampling

