Co 189 / 289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saced Daremi DISll

| Score—matching

We focus on the task of training a generative model approximating a data distribution pp(x). More
particularly, we consider score-based generative models parameterized as pg(x) = Zig exp(—Eg(x)).
Here, Ey typically corresponds to a neural network, where 6 denotes the set of parameters learned
during training; Z, is a normalizing constant that ensures that py(x) is a density.

Last week, we covered a first approach to train the model via maximum likelihood:

max E,,) [1og pa(x)] M
An alternative approach, named score matching, consists in minimizing the following loss:

. 1 2
min E,om > ||s9(x) -V, log pD(x)H , Wwhere sy(x) = V,log py(x).

(a) Qualitatively, explain why the new optimization problem is appropriate to train a generative
model.

Solution: Score matching minimizes the expected squared norm between the score of the gen-
erative model and the score of the data distribution. If the learned score properly approximates
the true score, we will be able to generate samples from the model, e.g., using Langevin Monte
Carlo. Unfortunately, the objective function cannot be easily approximated, as it involves the
unknown score of the data distribution.

(b) To circumvent this issue, one solution is to rely on noise perturbations of the data. Let X be
a perturbed version of x, sampled from ¢, (% | x) = N(&; x,0°I), that is, ¥ follows a normal
distribution, centered at x with covariance o-2I. We consider the modified problem:

1
min B, 0By, s [5 Is6(%) - Vi log g,(% | x>||2] : @)

Simplify the new problem.
Solution: We have that
. 3 1 | 5
go(X | x) = W eXp 252 1% — x|
Since the prefactor is constant with respect to X, we have that

Vilog g, (¥ x) = — (% - x).
(oA

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Consequently, the revisited minimization problem corresponds to

1
56(X) + — (X — x)
o

|

Solution: Until convergence, or a maximum number of iterations is reached,

. 1
min By, Bq, o [5
(c) Suggest an algorithm to learn 6.

(a) Sample a mini-batch of n data points xy, ..., x, ~ pp(x).
(b) Perturb each x;: sample X; ~ ¢, (X | x;).

(c) Compute the loss: L(6) = ﬁ 1 |s9(5c,-) + #(fc,- - x,~)||2.
(d) Use backpropagation to obtain the gradient VyL(6).

(e) Update the parameters 6 via gradient descent.

(d) One limitation of the maximum likelihood based approach from Equation (I) is that it may
learn densities that poorly approximate the true data distribution in low density regions. Jus-
tify why this is the case. Is the same behavior expected with generative models trained with
Equation (2))?

Solution: The MLE problem weights data points based on their density under the original
distribution pp(x). This weighting is not desirable, because it may learn densities that poorly
approximate the true data distribution, since such regions will have a very small contribution
compared to high density ones. Contrarily, Equation (2) fits the generative model on perturbed
data. In particular, observations are weighted by ¢ (¥ | x. Assuming that o~ is sufficiently large,
this may lead to a generative model that performs significantly better in low density regions.

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

2 Derivation of the Bellman Equations

This problem attempts to provide some intuitions for Markov Decision Process (MDP). The seem-
ingly simple equations related to MDP sometimes hide subtleties, which we hope to illustrate
through this exercise.

In an MDP, at each time step ¢, an agent receives a representation of the environment’s state S, € S,
selects an action A, € A, which leads the environment to produce a reward R,,; € R and a new
state ;1 € S. To set up an MDP, we need a few definitions. First, we define its dynamics, because
we make the Markov assumption, it suffices to define the one-step dynamics:

p(s’,rls,a) =P[S 1 = 5, Ry =1IS, = 5,A, = a]

Then, we define the refurn following time ¢ as:

(o8]

G, =R + YRz + 72Rt+3--- = Z Vth+k+l =R +vGiy
k=0

where 0 < y < 1 is the discount rate. We also define a policy that maps from states to the
probabilities of actions:
n(als) = P[A, = alS, = s]

Finally, for all s € S, we define the state-value function of the state s under policy 7 as:
Va(s) = Bx[GiIS, = 5] = Bx[Ri11 + ¥G1alS, = 5]

which represents the expected future return when starting at s and following r thereafter.
Similarly, for all s € S,a € A, the action-value function of taking the action a in state s under
policy is:

qr(s,a) = E;[G/S; = 5,A; = a] = E;[R11 + YGilS: = 5,A; = a]

A brief note on the notations: the notation E,[X|Y = y] is used to indicate the expectation of random
variable X conditioning on the random variable Y with value y, when following the policy x. Often,
X relates to the reward. Implicitly, the expectation is taken over all variables that is random inside
the expectation (except for the ones we condition on), which could include the state, the action and
the reward (at the current and future time points), all of which could be influenced by the policy 7.
Derivations in MDP often involves manipulating this expectation.

(a) To familiarize ourselves with the notations, let’s try to understand the relationships between
these definitions by expressing the following:

e Express the expectation of R, in terms of 7 and p(s’, r|s, a)
e Express v,(s) in terms of g, and 7

e Express g,(s,a) in terms of v, and p(s’, r|s, a)

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

(b)

()

Solution: First, consider E,[R,,|S, = s]. By definition of conditional expectation, we have:

BlRi1lS, = s1=) rp(rls)

= Z r Z p(s’, rls, a)n(als)

Note that even though we only denote one expectation, we are actually marginalizing out
Rt+19 St+1’ At-

Next, consider v,(s), we have:

v(5) = Brlga(s, @)l =) guls, a)m(als)

a

Here we are using the law of total expectation. g¢,[s,a] is itself a conditional expectation.
We introduce A, = a in the conditioning of the inside expectation (which marginalizes out
S +1, Ri+1 and all the future reward R;,», R,3, ...), then marginalize out A, in the outside expec-
tation. This is very similar to the previous subpart, except because of the recursive definition
of G,, we need to marginalize out all the future reward. But we don’t need to do this explicitly
since ¢,(s, a) already captures this.

Finally, consider ¢,(s, a), we have:

Gn(s,a) = Ex[Rp1 + yva(S2)IS, = 5,A, = a] = Z[r +yve(s)p(s’, rls, a)

s’

Here what changes is the order of expectation, where the outside expectation marginalizes out
S+1, Ri41, and the inside expectation marginalizes out Ry,,, R;,3,.... Note since we already
conditioned on A,, we don’t marginalize it out.

Next, we derive the Bellman equation, which demonstrates that a fundamental property of the
value function is that it satisfies a certain recursive relationship. There are actually two related
notions: the Bellman expectation equation and the Bellman optimality equation. Let’s first
derive the Bellman expectation equation (defined for all s € S):

va(s) = > wlals)) pls's rls, @)lr + yva(s))]

a

Solution: We did all the work in the previous part. Combining subpart 2 and 3, we have

v(s) = D m(als)qu(s,a) = D wals) Y p(s'srls, @)lr + yve(s)]

a a

In MDP, we are interested in finding the optimal policy which maximizes the value function.
We define the optimal state-value function as the state-value function under the optimal policy
T

v.($) = max vr(s)

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Similarity, the optimal action-value function as:

q.(s,a) = max q,(s,a)

Let’s derive the Bellman optimality equation (defined for all s € S):

v.(5) = max Z p(s’, rls,a)[r + yv.(s")]

Intuitively, this states that the value of a state under an optimal policy equals the expected
return for the best action from that state.

Solution: First, note the optimal action-value function gives the expected return for taking
action A; = a in state S, = s at time ¢ and thereafter following an optimal policy. Using what
we derived from Part (a), we have:

q«(s,a) = Ez[Ris1 + (SIS, = 5,A, = a] = Z[r +yv()]p(s’, s, a)

s’

It remains to be shown that
v,(s) = max q.(s, a)
a

This is justified since g.(s, a) already accounts for the expected return for all time steps after
t following the optimal policy, given the current state s and action taken a, so if we maximize
q.(s, a) over the action A, = a taken at the current time, we obtain v.(s). In other words, if we
have the optimal value function v,, the actions that appear best after a one-step search will be
the optimal actions.

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

3 Space Exploration

You are controlling a spacecraft on a mission to explore and gather data from various celestial
bodies in a solar system. The spacecraft can be in one of three states based on its energy lev-
els: "FullEnergy’, ’LowEnergy’, and 'Depleted’. ’Depleted’ is a terminal state, representing the
spacecraft running out of energy and being unable to continue its mission. We denote the states as
S ={F,L,D}.

At each state (except "Depleted”), there are two possible actions: Conserve’ and "Explore’. *Con-
serve’ represents cautious exploration with energy conservation, while "Explore’ represents ag-
gressive exploration consuming more energy. We denote the actions as A = {C, E}.

The one-step dynamics of the system is defined as the following:

From ’FullEnergy’:

1. Conserve (FullEnergy — FullEnergy): Probability = 1, Reward = 1 (safe exploration)

2. Explore (FullEnergy — LowEnergy): Probability = 0.5, Reward = 2 (risky but more reward-
ing exploration)

3. Explore (FullEnergy — FullEnergy): Probability = 0.5, Reward = 2 (successful aggressive
exploration without losing much energy)

From ’LowEnergy’:

1. Conserve (LowEnergy — FullEnergy): Probability = 0.5, Reward = 1 (successful energy
conservation)

2. Conserve (LowEnergy — LowEnergy): Probability = 0.5, Reward = 1 (maintaining energy
level)

3. Explore (LowEnergy — Depleted): Probability = 1, Reward = -10 (running out of energy)

In this problem, we will derive the policy iteration and value iteration updates for the MDP above.
As a reminder, policy iteration consists of a policy evaluation step followed by a policy improve-
ment step, defined as:

Policy evaluation: vi.i(s) = " m(als) Y p(s', rls, @)[r + yvi(s)]

a

Policy improvement: n'(s) = argmax Z p(s’, rls,a)[r + yvi(s)]

o
S,r

Value iteration effectively combines policy improvement and a truncated policy evaluation:

Vi1 (8) = max Z p(s’,rls, a)[r + yvi(s')]

Note how the policy iteration and value iteration correspond to turning the Bellman expectation
equation and the Bellman optimality equation into the respective updates rules.

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

(a) Suppose we initialize with a policy that always conserves regardless of the states, i.e. my(Cl|s) =
1, mo(E]s) = O for all s. Also, we initialize value functions vy(s) = O for all s. Let the discount
rate y = 0.5. Run policy iteration for two iterations. Does policy iteration converges after two
iterations?

Solution: We start with policy evaluation:

vi(F) = p(F, r|F, O)[r + yvo(F)]
= 1[1 +0.5v(F)] = 1

vi(L) = p(F, r|L, C)[r + yvo(F)] + p(L, r|L, C)[r + yvo(L)]
= 0.5[1 + 0.5v(F)] + 0.5[1 + 0.5vy(L)] = 1

where we abuse notation and uses r to denote the reward given the corresponding state and
action.

Then, run policy improvement given the updated value functions:
ﬂ-l(F) = argmax {p(F7 r|F7 C)[r + ')/Vl(F)], p(Fa r|F7 E)[r + ')/VI(F)] + p(L9 rlFa E)[r +)’VI(L)]}
CE

= argmax {C : 1[1 +0.5v{(F)], E : 0.5[2 + 0.5v{(F)] + 0.5[2 + 0.5v,(L)]}

C.E

=argmax{C : 1.5,E:25}=F
C.E

m(L) = argC{I;aX {p(F, r|L, O)[r + yvi(F)] + p(L, r|L, C)[r + yvi(L)], p(D, r|L, E)[r + yvi(D)]}
= argmax {C : 0.5[1 + 0.5v{(F)] + 0.5[1 + 0.5v{(L)], E : 1[-10 + 0.5v{(D)]}

C.E
=argmax{C : 1.5,E:-10} =C
C.E

We then run policy evaluation again given the updated policies. Note 7y (F) = E # mo(F), m1(L) =
C = mo(L):

vo(F) = p(F, rF, E)[r + yvi(F)] + p(L, r|F, E)[r + yvi(L)]
=0.5[2 4+ 0.5v(F)] + 0.5[2 + 0.5v{(L)] = 2.5

va(L) = p(F, rIL, O)[r + yvi(F)] + p(L, r|L, C)[r + yvi(L)]
=0.5[1 +0.5vi(F)] + 0.5[1 + 0.5v{(L)] = 1.5

Then run policy improvement given the updated values:

m(F) = argmax {C : 1[1 + 0.5v,(F)], E : 0.5[2 + 0.5v,(F)] + 0.5[2 + 0.5v,(L)]}

C.E

=argmax{C :2.25,E : 3} =E
CE

m(L) = argmax {C : 0.5[1 + 0.5v,(F)] + 0.5[1 + 0.5v,(L)], E : 1[-10 + 0.5v,(D)]}
C.E

=argmax{C :2,E:-10}=C
CE

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

We have m,(s) = m(s) for all s, so the policy iteration has converged, and we have found the
optimal policy: m.(F) = E, (L) =

(b) Run value iteration for two iterations. Does it converge after two iterations?

Solution: By definition of value iterations:

vi(F) = max{p(F, r|F, C)[r + yvo(F)], p(F, r|F, E)[r + yvo(F)] + p(L, r|F, E)[r + yvo(L)]}
= max{1[1 + 0. 5v0(F)] 0.5[2 + 0.5vo(F)] + 0.5[2 + 0.5vo(L)]}

2} =

{
{
= max{1,
vi(L) = max{p(F, i’lL O)lr + yvo(F)] + p(L, rIL, O)[r + yvo(D)], p(D, r|L, E)[r + yvo(D)]}
= max{0.5[1 + 0.5vo(F)] + 0.5[1 + 0.5vo(L)], 1[—10 + 0.5vo(D)]}

{

=max{l,-10} =1

Using these updated values, we can run another step of value iteration:

v2(F) = max{p(F, r|F, O)[r + yvi(F)], p(F, r|F, E)[r + yvi(F)] + p(L, r|F, E)[r + yvi(D)]}
max{1[1 + 0.5v;(F)],0.5[2 + 0.5v;(F)] + 0.5[2 + 0.5v, ()]}

{
{
ax{2,2.75} = 2.75
{
{
{

I
=

v2(L) = max{p(F, r|L, O)[r + yvi(F)] + p(L, r|L, O)[r + yvi(D)], p(D, r|L, E)[r + yvi(D)]}
max{0.5[1 + 0.5v{(F)] + 0.5[1 + 0.5v{(L)], 1[-10 + 0.5v{(D)]}
= max{1.75,-10} = 1.75

After two rounds, value iteration hasn’t converged yet.

(¢) You might notice how these algorithms all look very similar to each other. This is because,
as we have seen in the previous exercise, they are essentially just different angles of viewing
the same relationship (or different ways of rewriting v and ¢ in relation to each other and
themselves, if you like). In practice, however, policy iteration and value iteration might have
different convergence time, depending on the MDP and the specific implementations. What
are some factors that might affect the convergence time of these algorithms?

Solution: Both policy iteration and value iteration are Dynamic Programming (DP) algorithms
for solving MDP (i.e. finding the optimal policy and optimal value). Given the state space size
|S| and action space size |A|, the run times of these DP algorithms are polynomial in |S| and
|Al, which is much better than directing searching the policy space, since the total number of
(deterministic) policy is [A|'S! (for each state, a deterministic policy must choose one of the
|A| possible actions and the choice of action in each state is independent of the choice in other
states).

In practice, these algorithms usually converge much faster than their theoretical worst-case run
times. Initializations of the value functions and policies are important factors. Also, how the
DP updates are actually implemented matters. Updates can be done out-of-place (updating
the entire v;,(s) vector using old values of v,(s"), which is what we implemented above) or
in-place (updating each entry of v, (s) using the newest value for v(s”)), and they can be done

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

synchronously (in each iteration, sweep over the entire state space) or asynchronously (update
the values of states in any order whatsoever, using whatever values of other states happen to
be available).

DIS11, ©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

	Score-matching
	Derivation of the Bellman Equations
	Space Exploration

