
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS12

1 Message Passing Graph Neural Network
Graphs are a representation which supports arbitrary (pairwise) relational structure. To have a
neural network model that can operate on arbitrary relational structures, we need to introduce
specialized formalism, which can broadly be classified under the umbrella term of graph neural
networks (GNNs). One desiderata of a GNN is to be able to learn representations of nodes that
depends on the structure of the graph, and can hence be useful for downstream tasks of interest.
Message passing is a general formalism used by GNNs to learn such representations.

In this problem, we will first give a concrete illustration of the basic building blocks of message
passing. Then, we will explore three ”flavors” of message passing that underpin the vast majority
of GNN layers in the literature: convolutional, attentional, and general message passing. We will
see that some familiar neural network architectures, e.g. convolution and attention layers, can
be formulated as message passing on a graph with particular parameterizations of the messages.
Finally, we will view GNNs from the lens of imposing inductive bias on the functions a model can
learn, based on our prior on the underlying symmetry structure of the data.

To start, let’s define some notations. Suppose we are given an input graphG = (V,E) with node set
V and edge set E, along with a set of node features X ∈ Rd×|V|. We wish to use this information to
generate learned node embeddings zu,∀u ∈ V. During each message passing iteration in a GNN,
a hidden embedding h(k)

u is generated, representing the updated embedding of node u ∈ V in the
k iteration, based on the information aggregated from u’s graph neighborhood N(u) (which could
include u itself). In its most general form, a message passing update can be expressed as:

h(k)
u = ϕ

(k)
(
h(k−1)

u ,
⊕({

ψ(k)(h(k−1)
v ,h(k−1)

u),∀v ∈ N(u)
}))

= ϕ(k)
(
h(k−1)

u ,
⊕({

m(k)
vu ,∀v ∈ N(u)

}))
= ϕ(k)

(
h(k−1)

u ,m(k)
u

)
where ϕ(k) (update function), ψ(k) (message function) are arbitrary differentiable functions (e.g.
parameterized by neural networks).

⊕
is an aggregation operator, typically a nonparametric oper-

ation e.g. summation (often with appropriate normalization) or maximum. For notational simplic-
ity, we use m(k)

vu = ψ(k)(h(k−1)
v ,h(k−1)

u) to denote the ’message’ from a ’sender’ node v to ’receiver’
node u, and m(k)

u to denote the aggregated messages from all of u’s neighbors. The superscript (k)
on functions and embeddings is used to distinguish between different rounds of message passing
(often omitted for notational brevity). A single GNN ”layer” can include one or multiple rounds
of message passing.

Message construction, aggregation and update can be considered the three main building blocks

DIS12,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

of a message passing layer. The initial embeddings at k = 0 are set to the input features of each
node: h(0)

u = xu,∀u ∈ V. After k iterations of message passing, the embedding h(k)
u of node u might

encode information about all the nodes in u’s k-hop neighborhood that is relevant for the training
objective. Suppose we run K iterations of message passing in total, we can use the output of the
final layer to define the embedding for each node: zu = h(K)

u ,∀u ∈ V.

(a) The general formulation above is quite abstract. Let’s instantiate it concretely by considering
a basic GNN message passing block below:

h(k)
u = σ

W(k)
selfh

(k−1)
u +W(k)

neigh

∑
v∈N(u)

h(k−1)
v + b(k)

where W(k)

self,W
(k)
neigh ∈ Rd(k)×d(k−1)

are trainable parameter matrices, σ is an elementwise non-
linearity (e.g. ReLU) and b(k) ∈ Rd(k)

is the trainable bias parameters. Let’s first identify the
functions that instantiate the message function ψ, the aggregation function

⊕
and the update

function ϕ.

Solution: The functions are defined below:

ψ(hv,hu) =Wneighhv = mvu⊕({
mvu,∀v ∈ N(u)

})
=
∑

v∈N(u)

mvu = mu

ϕ (hu,mu) = σ (Wselfhu +mu + b)

Note that this is not the only way to define these functions. The important thing is to see that
this is indeed an instantiation of the general message passing algorithm.

Figure 1: A visualisation of the dataflow for the three flavours of a GNN layer (from Bronstein et al.)

(b) As we have seen, message passing is a fairly general formalism. Designing a message passing
GNN layer, which involves choosing appropriate message construction, aggregation and up-
date functions for a task of interest, remains an active area of research. Despite the vast space
of possible choices, the majority of GNN architecture in the literature can be derived from
three ‘flavors’ of GNN layers: convolutional, attentional and general message-passing, which
differ in their message construction (Figure 1).

DIS12,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Let’s first consider the convolutional flavor:

h(k)
u = ϕ

(
h(k−1)

u ,
⊕({

W(k)h(k−1)
v ,∀v ∈ N(u)

}))
We can express our familiar 2D convolution layer as convolutional message passing on a graph.
Consider an input I ∈ RH×W×d(k−1)

(e.g. consider a H × W image with d(k−1) input channels).
This image can be represented as a graph in the form of an H ×W grid.

Let our learnable parameters for this layer be W(k) ∈ Rh×w×d(k)×d(k−1)
(a convolutional layer with

filters of size h × w, d(k−1) input channels and d(k) output channels). For any given point (i, j)
in the grid graph, let the input embedding be h(k−1)

i j = [hi j1,hi j2, ...hi jd(k−1)] ∈ Rd(k−1)
, where hi jc

is the value of input channel c at pixel (i, j).

Suppose h = w = 3. Consider a point u = (x, y). Which points are its neighbors? Express its
output embedding h(k)

u (or h(k)
xy) in terms of W(k) and the input embeddings of its neighbors.

Solution: Since our filter size is 3 × 3, the neighbors of the point at (x, y) is the set N(u) =
{(x + i, y + j)}i∈{−1,0,1}, j∈{−1,0,1}. The aggregated message is the convolution of the filter with the
neighbors’ input embeddings, and the update function is a non-linearity.

h(k)
u = σ

 ∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

Wi jh(k−1)
x+i, y+ j

where each Wi j ∈ Rd(k)×d(k−1)

is the slice of W at the i jth spatial entry of W (and we let W00

contain the center of each filter). Note that the message only depends on the sender node v but
not on u. Furthermore, the weights don’t depend on either node u or v.

(c) Next, let’s consider the attentional flavor:

h(k)
u = ϕ

(
h(k−1)

u ,
⊕({

a(h(k−1)
u ,h(k−1)

v)h(k−1)
v ,∀v ∈ N(u)

}))
where a(hu,hv) ∈ R are the attention weights.

Suppose the attention weights are computed by a (single-head) scaled dot-product self-attention.
What are the neighbors N(u) of node u? Express the self-attention weight αuv in terms of the
input embedding hu of node u, the input embeddings of its neighbors hv where v ∈ N(u), the
key and query weight matrices Wk,Wq ∈ Rd×d.

Solution: Self-attention can be thought of as message passing on a fully-connected graph,
where N(u) = V, and the messages take the form of a weighted combination of the neigh-
bors’ embeddings with attention weights. One way to parameterize the attention weights is as
follows:

a(hu,hv) =
exp
{

1
√

d
(Wkhv)T (Wqhu)

}
∑

v′∈N(u) exp
{

1
√

d
(Wkhv′)T (Wqhu)

}

DIS12,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

where we have the scaled dot-product self-attention weights softmax-normalized across all
neighbors. Note the difference to convolutional message passing is that the weights are now
feature-dependent, and the messages depend on both the receiver node u and the sender node
v.

If we want to emulate the standard self-attention more closely, we could additionally multiply
hv by a value weight matrix Wv after the attention weighting. We could also construct mul-
tihead self-attention by letting the messages be a concatenation of the attention outputs from
each head. Also note that attentional message passing encapsulate other types of attention as
well, where the connectivity of the graph depends on the type of attention.

(d) One important thing to note is a representational containment between these approaches:
convolutional ⊆ attention ⊆ message passing, since general message passing amounts to al-
lowing arbitrary learnable message functions, whereas convolutional and attentional message
passing poses constraints on the form of the message functions. However, this does not imply
that general message-passing GNN is always the most useful variants. What are some factors
that might affect the effectiveness of these approaches?

Solution: General message passing GNNs compute vector-valued messages across edges, so
they are typically harder to train, has longer run time and requires larger amount of mem-
ory. They might also have more parameters, depending on how complex the parameterization
ψ is. The underlying structure of the data is also important. For grid-like data with regular
neighborhood structure (e.g. images), convolutional approaches can be much more efficient.
Attentional message passing offers a middle-ground by allowing for modelling complex inter-
actions within neighbourhoods while computing only scalar-valued quantities across the edges,
making them more scalable than general message passing.

DIS12,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

2 Kernel PCA
You have seen how to use PCA to do dimensionality reduction by projecting the data to a subspace
that captures most of the variability visible in the observed features. The underlying hope is that
these directions of variation are also relevant for prediction the quantities of interest.

Standard PCA works well for data that is roughly Gaussian shaped, but many real-world high
dimensional datasets have underlying low-dimensional structure that is not well captured by linear
subspaces. However, when we lift the raw data into a higher-dimensional feature space by means
of a nonlinear transformation, the underlying low-dimensional structure once again can manifest
as an approximate subspace. Linear dimensionality reduction can then proceed. As we have seen
in class so far, kernels are an alternate way to deal with these kinds of nonlinear patterns without
having to explicitly deal with the augmented feature space. This problem asks you to discover how
to apply the “kernel trick” to PCA.

Let X ∈ Rn×ℓ be the data matrix, where n is the number of samples and ℓ is the dimension of the
raw data. Namely, the data matrix contains the data points x j ∈ R

ℓ as rows

X =

x⊤1
x⊤2
...

x⊤n

 ∈ R
n×ℓ. (1)

(a) Compute XX⊤ in terms of the singular value decomposition X = UΣV⊤ where U ∈ Rn×n,Σ ∈

Rn×ℓ and V ∈ Rℓ×ℓ. Notice that XX⊤ is the matrix of pairwise Euclidean inner products for the
data points. How would you get U if you only had access to XX⊤?

Solution: We have XX⊤ = UΣV⊤VΣ⊤U⊤ = UΣ2U⊤. Here, Σ2 is a n × n diagonal matrix with
zeros on the diagonal as needed. Notice that the columns of U are the eigenvectors of XX⊤.

(b) Given a new test point xtest ∈ R
ℓ, one central use of PCA is to compute the projection of xtest

onto the subspace spanned by the k top singular vectors v1, v2, . . . , vk.

Express the scalar projection z j = v⊤j xtest onto the j-th principal component as a function of
the inner products

Xxtest =

⟨x1, xtest⟩

...

⟨xn, xtest⟩

 . (2)

Assume that all diagonal entries of Σ are nonzero and non-increasing: σ1 ≥ σ2 ≥ · · · > 0.

Hint: Express V⊤ in terms of the singular values Σ, the left singular vectors U and the data
matrix X.

Solution: Using the compact form of the SVD, we have V⊤ = Σ−⊤U⊤X. Here, Σ−⊤ denotes
the l × n matrix with the reciprocal singular values along the main diagonal. Thus,

z j = v⊤j xtest = σ
−1
j u⊤j Xxtest.

DIS12,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

(c) How would you define kernelized PCA for a general kernel function k(xi, x j) (to replace the

Euclidean inner product ⟨xi, x j⟩)? For example, the RBF kernel k(xi, x j) = exp
(
−
∥xi−x j∥

2

δ2

)
.

Describe this in terms of a procedure which takes as inputs the training data points x1, x2, . . . , xn ∈

Rℓ and the new test point xtest ∈ R
ℓ, and outputs the analog of the previous part’s z j coordinate

in the kernelized PCA setting. You should include how to compute U from the data, as well as
how to compute the analog of Xxtest from the previous part.

Solution:

(a) Obtain the vectors u j as eigenvectors from the eigendecomposition of K ∈ Rn×n with
Ki j = k(xi, x j). The eigendecomposition also gives us Σ2 as defined in part (a).

(b) Kernelize the inner products z j =
1
σ j

u⊤j Xxtest via

z j =
1
σ j

u⊤j

k(x1, xtest)
k(x2, xtest)

...

k(xn, xtest)

 (3)

.

DIS12,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

	Message Passing Graph Neural Network
	Kernel PCA

