
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS1

1 Maximizing Likelihood & Minimizing Cost
Maximum Likelihood Estimation (MLE) is a method for estimating the parameters of a statistical
model given observations.

Data Suppose we obtain n discrete observations belonging to B := {1, 2, 3, 4}. Our dataset looks
something like the following.

r1 = 1
r2 = 1
r3 = 3
...

rn = 1

Assumptions Suppose we aim to estimate the occurence probabilities of each class in B based
on the observed data. We additionally assume that observations are independent and identically
distributed (i.i.d.). In particular, this assumption implies that the order of the data does not matter.

Model Based on these assumptions, a natural model for our data is the multinomial distribu-
tion. In a multinomial distribution, the order of the data does not matter, and we can equivalently
represent our dataset as (y, cy)y∈B, where cy is the number of items of class y.

The probability mass function (PMF) of the multinomial distribution—this is, the probability in n
trials of obtaining each class i xi times—is

P(x1, . . . , xk) = n!
k∏

i=1

pxi
i

xi!
.

(a) Derive an expression for the likelihood for this problem. What are the observations? What are
the parameters? What parameters are we trying to estimate with MLE?

Solution: Since we are working in the discrete case, we simply have L(θ; x) = P(x; θ).

L(p1, p2, p3, p4; c1, c2, c3, c4) = n!
∏
y∈B

pcy
y

cy!

The observations are the counts of each class c1, c2, c3, c4. The parameters are the probabilities
of each class p1, p2, p3, p4, the total number of trials n and the total number of classes k. Out of
these, we only aim to estimate the probabilities of each class p1, p2, p3, p4 (n and k are known).
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(b) Typically, the log-likelihood ℓ(θ) = log L(θ) is used instead of L(θ). Write down the expression
for ℓ(θ). Why might this be a good idea?

Solution:

ℓ(p1, p2, p3, p4; c1, c2, c3, c4) = log

n!
∏
y∈B

pcy
y

cy!


= log n! +

∑
y∈B

cy log py −
∑
y∈B

log cy!

This program is concave in p1, p2, p3, p4 and has linear constraints (the sum of the probabilities
is 1), which makes it easy to solve using convex optimization techniques.

(c) Another idea might be to minimize the cross-entropy based on raw observations, corresponding
to the following program

argmin
p∈R4

+

||p||1=1

−

n∑
i=1

∑
y∈B

δriy log py

where p is the vector of probabilities per class
[
p1 p2 p3 p4

]⊤
, and δriy is the Kronecker

delta that outputs 1 if ri = y and 0 otherwise.

Show that this program is equivalent to the MLE program.

Solution: MLE and maximum entropy actually provide the same estimates for this problem.

argmax
p∈R4

+

||p||1=1

L(p; c1, c2, c3, c4) = argmax
p∈R4

+

||p||1=1

n!
∏
y∈B

pcy
y

cy!

= argmax
p∈R4

+

||p||1=1

log
∏
y∈B

pcy
y

cy!

= argmax
p∈R4

+

||p||1=1

∑
y∈B

log
pcy

y

cy!

= argmax
p∈R4

+

||p||1=1

∑
y∈B

cy log py −
∑
y∈B

log
(
cy!

)
Note that the

∑
y∈B log

(
cy!

)
term is a constant with respect to p, so it does not affect the opti-

mization problem.

argmax
p∈R4

+

||p||1=1

∑
y∈B

cy log py −
∑
y∈B

log
(
cy!

)
= argmin

p∈R4
+

||p||1=1

−
∑
y∈B

cy log py

= argmin
p∈R4

+

||p||1=1

−

n∑
i=1

∑
y∈B

δriy log py

■
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2 Independence and Multivariate Gaussians
As described in lecture, a covariance matrix Σ ∈ RN×N for a random variable X ∈ RN with the
following values, where cov(Xi, X j) = E[(Xi − µi)(X j − µ j)] is the covariance between the i-th and
j-th elements of the random vector X:

Σ =


cov(X1, X1) ... cov(X1, Xn)

... ...

cov(Xn, X1) ... cov(Xn, Xn)

 . (1)

Recall that the density of an N dimensional Multivariate Gaussian Distribution N(µ,Σ) is defined
as follows when Σ is positive definite:

f (x) =
1√

(2π)N |Σ|
e−

1
2 (x−µ)⊤Σ−1(x−µ). (2)

Here, |Σ| denotes the determinant of the matrix Σ.

(a) Consider the random variables X and Y in R with the following conditions.

(i) X and Y can take values {−1, 0, 1}.

(ii) When X is 0, Y takes values 1 and -1 with equal probability ( 1
2 ). When Y is 0, X takes

values 1 and -1 with equal probability (1
2 ).

(iii) Either X is 0 with probability (1
2 ), or Y is 0 with probability (1

2 ).

Are X and Y uncorrelated? Are X and Y independent? Prove your assertions. Hint: Write
down the joint probability of (X,Y) for each possible pair of values they can take.

Solution: Essentially, there are 4 possible pairs of points that (X, Y) can be, all with equal
probability (1

4 ): {(0, 1), (0,−1), (1, 0), (−1, 0)}, If graphed onto the Cartesian plane, these points
will form “crosshairs”.

To show that X and Y are uncorrelated, we need to prove:

E[(X − E[X])(Y − E[Y])] = 0,

or equivalently, that E[XY] = E[X]E[Y].

Since X,Y can be simultaneously nonzero, E[XY] = 0.

In parallel,

E[X] = E[Y] =
1
2
∗ 0 +

1
2
∗

(
1
2
+
−1
2

)
= 0

We have shown that X and Y are uncorrelated.
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X and Y would be independent if
P(X|Y) = P(X)

Unfortunately, this is not the case. P(X = 0) = 1
2 , but P(X = 0|Y = 1) = 1. Thus, X and Y are

not independent.

(b) For X = [X1, · · · , Xn]⊤ ∼ N(µ,Σ), verify that if Xi, X j are independent (for all i , j), then Σ
must be diagonal, i.e., Xi, X j are uncorrelated.

Solution: Recall that if random variables Z,W are independent, we have E[ZY] = E[Z]E[Y].
Since the covariance E[(Xi − µi)(X j − µ j)] = E[Xi − µi]E[X j − µ j] = 0 · 0 is 0, it follows that
the pair of variables Xi, X j are uncorrelated.

(c) Let N = 2, µ =
00

, and Σ =
α ββ γ

. Suppose X =
X1

X2

 ∼ N(µ,Σ). Show that X1, X2 are

independent if β = 0. Recall that two continuous random variables W,Y with joint density
fW,Y and marginal densities fW , fY are independent if fW,Y(w, y) = fW(w) fY(y).

Solution: Recall that the marginal density of two jointly Gaussian random variables is also
Gaussian. In particular, we have that X1 ∼ N(µ1, α) and X2 ∼ N(µ2, γ). Let’s denote the
marginal densities as fX1(·) and fX2(·).

Since β = 0, we may compute the inverse Σ−1 =

α−1 0
0 γ−1

.
Let’s write out the joint density of X1, X2:

fX1,X1(x1, x2) =
1√

(2π)N |Σ|
e−

1
2 (x−µ)⊤Σ−1(x−µ)

=
1√

(2π)2αγ
e−

1
2 (α−1(x1−µ1)2+γ−1(x2−µ2)2)

=
1

√
(2π)α

e−
(x1−µ1)2

2α ·
1√

(2π)γ
e−

(x2−µ2)2

2γ

= fX1(x1) · fX2(x2)

This proves that X1, X2 are independent if β = 0. Note that we don’t need to verify that fX1(x1)
and fX2(x2) are properly normalized (i.e. integrate to 1), since we can always shift around
constant factors to ensure that this is the case.

(d) Consider a data point x drawn from an N-dimensional zero mean Multivariate Gaussian dis-
tribution N(0,Σ), as shown above. Assume that Σ−1 exists. Prove that there exists a matrix
A ∈ RN×N such that x⊤Σ−1x = ∥Ax∥22 for all vectors x. What is the matrix A?

Solution: Use the Spectral Theorem to decompose Σ into a product involving the following:
an orthonormal matrix Q of orthonormal eigenvectors vi ∀i ∈ [1...N] and a diagonal matrix D
with eigenvalues λi ∀i ∈ [1...N] along the diagonal. Note that all the eigenvalues are strictly
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positive since Σ is positive definite (it is a covariance matrix and Σ−1 exists). Hence, we may
write

Σ = QDQ⊤,

and, therefore,

Σ−1 = (QDQ⊤)−1 = (Q⊤)−1D−1Q−1 = QD−1Q⊤.

This is because orthonormal matrices satisfy Q−1 = Q⊤.

Note that if the matrix D has values λi along its diagonal, then D−1 has values 1
λi

along its
diagonal. Once again, since Σ was positive definite, the reciprocal 1

λi
exists (each λi > 0).

Now, we can decompose D−1 into its square-root by defining S as a diagonal matrix with
diagonal values 1

√
λi

. You can quickly verify that S S = D−1 and that S ⊤ = S . Thus, we have,

Σ−1 = QD−1Q⊤ = QS S Q⊤ = QS S ⊤Q⊤ (3)
Σ−1 = A⊤A, (4)

where we let A = (QS )⊤. Therefore,

x⊤Σ−1x = x⊤A⊤Ax = (Ax)⊤(Ax) = ∥Ax∥22. (5)

Note that A is not necessarily unique, however, since, if A⊤A = Σ−1, then (QA)⊤QA =
AT QT QA = AT (I)A = AT A = Σ−1 as well for any orthonormal Q.
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3 Least Squares (using vector calculus)

In ordinary least-squares linear regression, we typically have n > d so that there is no w such that
Xw = y (these are typically overdetermined systems — too many equations given the number of
unknowns). Hence, we need to find an approximate solution to this problem. The residual vector
will be r = Xw − y and we want to make it as small as possible. The most common case is to
measure the residual error with the standard Euclidean ℓ2-norm. So the problem becomes:

min
w
∥Xw − y∥22,

where X ∈ Rn×d,w ∈ Rd, y ∈ Rn.

Assume that X is full rank.

(a) How do we know that X⊤X is invertible?

Solution: Matrix X is said to be full rank if n ≥ d and its columns are not linear combinations
of each other. In this case, X⊤X will be positive definite and therefore invertible. If X is not
full rank, at least one of the columns will be a linear combination of the other columns. In this
case, the rank of X will be less than n and X⊤X will not be invertible.

In this question, we know that X has full rank, so if we can show that the rank of X is equivalent
to the rank of X⊤X , then X⊤X has full rank and is therefore invertible. Let us show the ranks
are equivalent using nullspaces. Suppose v is in the nullspace of X⊤X meaning X⊤Xv = 0:

X⊤Xv = 0
v⊤X⊤Xv = 0

(Xv)⊤(Xv) = 0
∥Xv∥22 = 0

Xv = 0 Because the only vector whose length is 0 is the 0 vector.

From this we can see that any v which is in nullspace of X⊤X also needs to be in the nullspace
of X. Since X and X⊤X have the same null space, then X⊤X should also be full rank and
therefore invertible.

(b) Derive using vector calculus an expression for an optimal estimate for w for this problem.

Solution: The work flow is as follows: We first find a critical point by setting the gradient to
0, then show that it is unique under the conditions in the question and finally that it is in fact a
minimizer.

Let us first find critical points wOLS such that the gradient is zero, i.e ∇w∥XwOLS − y∥22
∣∣∣
w=wOLS

=

0. In order to take the gradient, we expand the ℓ2-norm. First, note the following:

∇w(w⊤Bw) = (B + B⊤)w
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∇w(w⊤b) = b

We start by expanding the ℓ2-norm:

∇w(Xw − y)T (Xw − y)
= ∇w((Xw)T (Xw) − (Xw)T (y) − yT (Xw) + yT y) Combine middle terms, identical scalars.
= ∇w(wT X⊤Xw − 2wT X⊤y + y⊤y) Apply two derivative rules above
= (X⊤X + X⊤X)w − 2X⊤y
= 2X⊤(Xw − y)

Having computed the gradient, we now require it to vanish at the critical point w = wOLS

∇w∥Xw − y∥22
∣∣∣
w=wOLS

= 2XT (XwOLS − y)

= 2X⊤XwOLS − 2X⊤y = 0
=⇒ X⊤XwOLS = X⊤y

Because X is full rank, XT X is invertible (see question (b)) and thus there is only one vector
which satisfies the last equation which reads: wOLS = (X⊤X)−1X⊤y. Therefore, there is only
one unique critical point.

Furthermore, observe that the least square is twice differentiable, and that its Hessian corre-
sponds to

∇2
w(Xw − y)T (Xw − y) = ∇w∇w(Xw − y)T (Xw − y) (6)

= ∇w(2X⊤(Xw − y)) (7)
= 2XT X. (8)

This matrix is positive definite, implying that the objective function is convex. We conclude
from this observation that wOLS is the global minimum.

(c) What should we do if X is not full rank?

Solution: (Basic idea) If X ∈ Rn×d is not full rank, there is no unique answer. As we will see
later, this is not an issue in ridge regression where we add a penalization to the loss function
(thus change the loss function) which forces a unique solution. Another possibility is to use
the solution that minimizes the norm of w (in later lectures we will see why that might be a
good thing to do).

The minimum norm solution can be found by using the pseudo-inverse of X⊤X. The pseudo-
inverse of an arbitrary matrix X is denoted as X†. More intuitively, X† behaves most similarly
to the inverse: it is the matrix that, when multiplied by X, minimizes distance to the identity.
X† = argminW∈Rn×d∥XW − Im∥F .
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