
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS2

1 ℓ1- and ℓ2-Regularization
Consider sample points X1, X2, . . . , Xn ∈ R

d and associated values y1, y2, . . . , yn ∈ R, an n×d design
matrix X = [X1 . . . Xn]

⊤

and an n-vector y = [y1 . . . yn]
⊤

.

For the sake of simplicity, assume (1) that the sample data have been centered (i.e each feature
has mean 0) and (2) that the sample data have been whitened, meaning a linear transformation is
applied to the original data matrix so that the resulting features have variance 1 and the features
are uncorrelated; i.e., X

⊤

X = nI.

For this question, we will not use a fictitious dimension nor a bias term; our linear regression
function will output zero for x = 0.

Consider linear least-squares regression with regularization in the ℓ1-norm, also known as Lasso.
The Lasso cost function is

J(w) = ||Xw − y||22 + λ ∥w∥1

where w ∈ Rd and λ > 0 is the regularization parameter. Let w∗ = argmin w∈Rd J(w) denote the
weights that minimize the cost function.

In the following steps, we will explore the sparsity-promoting property of the ℓ1-norm and compare
this with the ℓ2-norm.

1. We use the notation X∗i to denote column i of the design matrix X, which represents the ith

feature. Write J(w) in the following form for appropriate functions g and f .

J(w) = g(y) +
d∑

i=1

f (X∗i,wi, y, λ)

Solution: We expand the objective, and simplify it using the fact that X
⊤

X = nI since the
data is whitened.

J(w) = w
⊤

X
⊤

Xw − 2y
⊤

Xw + λ∥w∥1 + ∥y∥2

= n∥w∥2 − 2y
⊤

Xw + λ∥w∥1 + ∥y∥2

We can write each term in sum form: n||w||2 =
∑d

i=1 nw2
i . λ∥w∥1 =

∑d
i=1 λ|wi|. And −2y

⊤

Xw =∑d
i=1 −2y

⊤

X∗iwi. So the appropriate functions are g(y) = ∥y∥2, and

f (X∗i,wi, y, λ) = nw2
i − 2y

⊤

X∗iwi + λ|wi|
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2. If w∗i > 0, solve for the optimal value w∗i . Hint: use your answer in the previous part.

Solution: We want to minimize

−2y
⊤

X∗iwi + nw2
i + λwi.

Setting the derivative to zero yields

w∗i =
1
n

(y
⊤

X∗i − λ/2).

3. If w∗i < 0, solve for the optimal value w∗i .

Solution: We want to minimize

−2y
⊤

X∗iwi + nw2
i − λwi.

Setting the derivative to zero yields

w∗i =
1
n

(y
⊤

X∗i + λ/2).

4. Considering parts 2 and 3, what is the condition for w∗i to be zero?

Solution: w∗i cannot be positive if y
⊤

X∗i−λ/2 ≤ 0, and w∗i cannot be negative if y
⊤

X∗i+λ/2 ≥ 0.
So w∗i is zero if both are true, i.e., −λ ≤ 2y

⊤

X∗i ≤ λ.

5. Now consider ridge regression, which uses the ℓ2 regularization term λ |w|2. How does this
change the function f (·) from part 1? What is the new condition in which w∗i = 0? How does
it differ from the condition you obtained in part 4?

Solution: The portion f (·) of the cost function involving wi is

−2y
⊤

X∗iwi + nw2
i + λw

2
i .

Setting the derivative to zero yields

w∗i =
y
⊤

X∗i
n + λ

.

Hence w∗i is zero if y
⊤

X∗i = 0. In contrast, w∗i = 0 when |2y
⊤

X∗i| < λ in Lasso regression. This
is why ℓ1-norm regularization encourages sparsity.

Also note that we have shown that whitened training data decouples the features, so that w∗i
is determined by the ith feature alone (i.e., column i of the design matrix X), regardless of the
other features. This is true for both Lasso and ridge regression.
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2 Probabilistic Interpretation of Lasso
Let’s start with the probabilistic interpretation of least squares. Start with labels y ∈ R, data x ∈ Rd,
and noise z ∼ N(0, σ2), where y = w⊤x + z. Recall from lecture that we then have

P(y | x,w, σ2) ∼ N(w⊤x, σ2)

However, maximum likelihood estimates (MLE) can overfit by picking parameters that mirror the
training data. To ameliorate this issue, we can assume a Laplace prior on w j ∼ Laplace(0, t), i.e.

P(w j) =
1
2t

e−|w j|/t

P(w) =
D∏

j=1

P(w j) =
(

1
2t

)D

· e−
∑
|w j|/t

Here, we will see that this modification results in the Lasso objective function.

Recall that the MLE objective finds the parameters that maximize the likelihood of the data,

w∗ = argmax
w

L(w)

= argmax
w

P(Y1, . . . ,Yn | w,X1, . . . ,Xn, σ
2)

= argmax
w

n∏
i=1

P(Yi | Xi,w, σ2).

When working in a Bayesian framework, we instead focus on the posterior distribution of the
parameters conditioned on the data, P(w | Y1, . . . ,Yn,X1, . . . ,Xn, σ

2). To pick a single model, we
can choose the w that is most likely according to the posterior,

w∗ = argmax
w

P(w | Y1, . . . ,Yn,X1, . . . ,Xn, σ
2)

= argmax
w

P(w,Y1, . . . ,Yn | X1, . . . ,Xn, σ
2)

P(Y1, . . . ,Yn | X1, . . . ,Xn, σ2)

= argmax
w

P(Y1, . . . ,Yn | w,X1, . . . ,Xn, σ
2)P(w)

P(Y1, . . . ,Yn | X1, . . . ,Xn, σ2)

= argmax
w

L(w)P(w)
P(Y1, . . . ,Yn)

= argmax
w

L(w)P(w) since P(Y1, . . . ,Yn | X1, . . . ,Xn, σ
2) does not depend on w.

We call w∗ the Maximum a posteriori (MAP) estimate.

(a) Write the log-likelihood for this MAP estimate.
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Solution:
We start with the likelihood.

P(w | Xi,Yi) ∝

 n∏
i=1

N(Yi | w⊤Xi, σ
2)

 · P(w) =

 n∏
i=1

N(Yi | w⊤Xi, σ
2)

 · D∏
j=1

P(w j)

Taking the log of the above expression, we now have:

l(w) =
n∑

i=1

logN(Yi | w⊤Xi, σ
2) +

D∑
j=1

log P(w j)

=

n∑
i=1

log

 1
√

2πσ
exp

− (Yi − w⊤Xi)2

2σ2

 + D∑
j=1

log

 1
2t

exp

−
∣∣∣w j

∣∣∣
t




= −

n∑
i=1

(Yi − w⊤Xi)2

2σ2 −

D∑
j=1

∣∣∣w j

∣∣∣
t
+ n log

 1
√

2πσ

 + D log
(

1
2t

)

(b) We already have the log-likelihood for MAP. Show that the MAP you derived in the previ-
ous part (in this case, Gaussian noise with a Laplace prior) is equivalent to minimizing the
following objective. Additionally, identify the constant λ. Note that ∥w∥1 =

∑D
j=1

∣∣∣w j

∣∣∣.
J(w) =

n∑
i=1

(Yi − w⊤Xi)2 + λ∥w∥1

Solution: We first negate the whole expression to change it from a maximization problem to a
minimization problem:

w∗ = argmax
w
−

n∑
i=1

(Yi − w⊤Xi)2

2σ2 −

D∑
j=1

∣∣∣w j

∣∣∣
t
+ n log

 1
√

2πσ

 + D log
(

1
2t

)

= argmin
w

n∑
i=1

(Yi − w⊤Xi)2

2σ2 +

D∑
j=1

∣∣∣w j

∣∣∣
t
− n log

 1
√

2πσ

 − D log
(

1
2t

)
Now, we drop constants from the expression above and multiply everything else with 2σ2 —
these transformations will not affect the argmin of the objective.

w∗ = argmin
w

n∑
i=1

(Yi − w⊤Xi)2 +
2σ2

t

D∑
j=1

∣∣∣w j

∣∣∣
= argmin

w

n∑
i=1

(Yi − w⊤Xi)2 + λ∥w∥1

= argmin
w

J(w)

for λ = 2σ2

t .
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3 MLE vs. MAP
Let D denote the observed data and θ the parameter. Whereas MLE only assumes and tries to
maximize a likelihood distribution p(D|θ), MAP takes a more Bayesian approach. MAP assumes
that the parameter θ is also a random variable and has its own distribution. Recall that using Bayes’
rule, the posterior distribution can be seen as the product of likelihood and prior:

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)︸ ︷︷ ︸

likelihood

p(θ)︸︷︷︸
prior

Suppose that the data consists of n i.i.d. observations D = {x1, . . . , xn}. MAP tries to infer the
parameter by maximizing the posterior distribution:

θMAP = argmax
θ

p(θ|D)

= argmax
θ

p(D|θ)p(θ)

= argmax
θ

 n∏
i=1

p(xi|θ)

 p(θ)

= argmax
θ

 n∑
i=1

log p(xi|θ)

 + log p(θ)

Note that since both of these methods are point estimates (they yield a value rather than a dis-
tribution), neither of them are completely Bayesian. A faithful Bayesian would use a model that
yields a posterior distribution over all possible values of θ, but this is oftentimes intractable or very
computationally expensive.

Now suppose we have a coin with unknown bias θ (probability of flipping heads in a single trial).
We will estimate the bias of the coin using MLE and MAP. You tossed the coin n = 10 times and
3 of the tosses came as heads.

(a) What is the MLE of the bias of the coin θ?

Solution:
p(x|θ) ∝ θx(1 − θ)(n−x) = θ3(1 − θ)7.

Taking the logarithm for easier computation, we have

log p(x|θ) = 3 log θ + 7 log(1 − θ) +C.

This is a concave function and thus the maximum is achieved by setting the derivative w.r.t. θ
to 0:

d
dθ

log p(x|θ) =
3
θ
−

7
1 − θ

= 0.

Therefore,
θ̂MLE = 0.3.
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(b) Suppose we know that the bias of the coin is distributed according to θ ∼ N(0.8, 0.09), i.e., we
are rather sure that the bias should be around 0.8.1 What is the MAP estimate of θ? You can
leave your result as an equation of the form a

θ
− b

1−θ −
θ−c

d .

Solution: Now take into account the prior distribution:

p(θ|x) ∝ p(x|θ)p(θ)

∝ θx(1 − θ)n−x exp
− (θ − µ)2

2σ2


= θ3(1 − θ)7 exp

− (θ − 0.8)2

2 × 0.09

 .
Taking the logarithm,

ln p(θ|x) = 3 ln θ + 7 ln(1 − θ) −
(θ − 0.8)2

2 × 0.09
+C.

Taking the derivative w.r.t. θ,

d
dθ

ln p(θ|x) =
3
θ
−

7
1 − θ

−
θ − 0.8

0.09
= 0.

Solving the equation yields
θ̂MAP ≈ 0.406.

θ̂ is now larger because we are assuming a larger prior.

(c) What if our prior is θ ∼ N(0.5, 0.09) or N(0.8, 1)? Write out the new equations using your
previous answer, but you do not need to solve for the exact numeric value. How does the
difference between MAP and MLE change and why?

Solution: The above equation would instead be

3
θ
−

7
1 − θ

−
θ − 0.5

0.09
= 0

for N(0.5, 0.09) and
3
θ
−

7
1 − θ

− (θ − 0.8) = 0

for N(0.8, 1). θ̂MAP ≈ 0.340 for N(0.5, 0.09) and θ̂MAP ≈ 0.31 for N(0.8, 1). For N(0.5, 0.09),
the prior is less distant from the experiment result; for N(0.8, 1), the prior is weaker due to a
larger variance. Therefore, the difference between the two models will decrease.

(d) What if our prior is that θ is uniformly distributed in the range (0, 1)?

Solution: The MLE and MAP estimate will be the same since the prior term p(θ) is uniform
and can be canceled out. From a Bayesian perspective, MLE can, in certain cases, be seen as
a special case of MAP estimation with a uniform prior.

1This is a somewhat strange choice of prior, since we know that 0 ≤ θ ≤ 1. However, we will stick with this example for
illustrative purposes.
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