
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS3

1 Logistic Regression
Assume that we have n i.i.d. data points (x1, y1), . . . , (xn, yn), where each yi is a binary label in
{0, 1}. We model the posterior probability as a Bernoulli distribution and the probability for each
class is the sigmoid function, i.e., p(y|x; w) = qy(1 − q)1−y, where q = s(w⊤x) and s(ζ) = 1

1+e−ζ is
the sigmoid function.

(a) Show that for a given data point x, the log ratio of the conditional probabilities, or log odds, is
linear in x. More specifically, show that

log
p(y = 1 | x; w)
p(y = 0 | x; w)

= w⊤x.

Solution:

log
p(y = 1 | x; w)
p(y = 0 | x; w)

= log
q

1 − q

= log
1

1+e−w⊤x

e−w⊤x

1+e−w⊤x

= log
1

e−w⊤x

= w⊤x

(b) Write out the likelihood and log likelihood functions for the n data points.

Solution: The likelihood is:

L(w) =
n∏

i=1

p(y = yi|xi) =
n∏

i=1

qyi
i (1 − qi)1−yi .

The log likelihood is:

l(w) =
n∑

i=1

yi log
(
qi
)
+ (1 − yi) log

(
1 − qi

)
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(c) Show that finding maximum likelihood estimate of w is equivalent to the following optimiza-
tion problem:

ŵ = argmin
w

 n∑
i=1

(1 − yi)w⊤xi + log
(
1 + exp

{
−w⊤xi

})
Solution: Now, we step through minimizing the negative log likelihood of the training data as
a function of the parameters w:

ŵ =

argmin
w
−

n∑
i=1

yi log
(
qi
)
+ (1 − yi) log

(
1 − qi

)
=

argmin
w
−

n∑
i=1

yi log
(

qi

1 − qi

)
+ log

(
1 − qi

)
From the first question, we get that yi log

(
qi

1−qi

)
= yiw⊤xi. The second term of the sum can be

simplified as follows:

log
(
1 − qi

)
= log

(
1 + exp

(
−w⊤xi

)
− 1

1 + exp(−w⊤xi)

)
= log

(
exp

(
−w⊤xi

)
1 + exp(−w⊤xi)

)
= −w⊤xi − log

(
1 + exp

(
−w⊤xi

))
.

Plugging in, we get that

ŵ = argmin
w

− n∑
i=1

yiw⊤xi − w⊤xi − log
(
1 + exp{−w⊤xi}

)
= argmin

w

 n∑
i=1

(1 − yi)w⊤xi + log
(
1 + exp

{
−w⊤xi

}) .
(d) Comment on whether it is possible to find a closed form maximum likelihood estimate of w,

and describe an alternate approach.

Solution: Let us denote J(w) =
∑n

i=1(1 − yi)w⊤xi + log
(
1 + exp

{
−w⊤xi

})
. Notice that J(w) is

convex in w, so global minimum can be found. Note that s′(ζ) = s(ζ)(1 − s(ζ)). Now let us
take the gradient of J(w) w.r.t w:

∇wJ =
n∑

i=1

(1 − yi)xi −
exp

{
−w⊤xi

}
1 + exp{−w⊤xi}

xi =

n∑
i=1

(−1 + s(w⊤xi) − yi + 1)xi =

n∑
i=1

(si − yi)xi = X⊤(s − y)

where, si = s(w⊤xi), s = (s1, . . . , sn)⊤, y = (y1, . . . , yn)⊤ and X =


x⊤1
...

x⊤n

.
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Unfortunately, we can’t get a closed form estimate for w by setting the derivative to zero, given
that the term s still contains w, and further-order derivatives will continue to carry expressions
over w. However, the convexity of this problem allows for first-order optimization algorithms,
such as gradient descent, to converge to a global minimum.

DIS3,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3



2 Gaussian Classification
Let P(x | ωi) ∼ N(µi, σ

2) for a two-category, one-dimensional classification problem with classes
ω1 and ω2, P(ω1) = P(ω2) = 1/2, and µ2 > µ1.

A common procedure to classify a data point x is to assign it to the class ωi with the highest
posterior probability P(ωi | x). We will justify this choice later in class.

In this problem, the decision boundary is the line that separates the two classes, that is, the line
where the posterior probabilities P(ω1 | x) and P(ω2 | x) are equal.

(a) Find the optimal decision boundary and the corresponding decision rule.

Solution:
P(ω1 | x) = P(ω2 | x) ⇔

P(x | ω1) P(ω1)
P(x) = P(x | ω2) P(ω2)

P(x) ⇔

P(x | ω1) = P(x | ω2) ⇔

N(µ1, σ
2) = N(µ2, σ

2) ⇔

(x − µ1)2 = (x − µ2)2

This yields the Bayes decision boundary: x = µ1+µ2
2 .

The corresponding decision rule is, given a data point x ∈ R:

• if x < µ1+µ2
2 , then classify x in class 1

• otherwise, classify x in class 2

Note that this is the centroid method.

(b) The probability of misclassification (error rate) is:

Pe = P((misclassified as ω1) | ω2) P(ω2) + P((misclassified as ω2) | ω1) P(ω1).

Show that the probability of misclassification (error rate) associated with this decision rule is

Pe =
1
√

2π

∫ ∞

a
e−z2/2dz, where a =

µ2 − µ1

2σ
.

Solution: We use the change of variables z = x−µ2
σ

, so that dz = 1
σ

dx.

P((misclassified as ω1) | ω2) =
∫ µ1+µ2

2

−∞

1
√

2πσ
e−

(x−µ2)2

2σ2 dx

=

∫ −(µ2−µ1)/2σ

−∞

1
√

2π
e−

z2
2 dz

=
1
√

2π

∫ +∞

a
e−

z2
2 dz

= Pe,
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Similarly, we use the change of variables y = x−µ1
σ

and dy = 1
σ

dx.

P((misclassified as ω2) | ω1) =
∫ +∞

µ1+µ2
2

1
√

2πσ
e−

(x−µ1)2

2σ2 dx

=

∫ +∞

(µ2−µ1)/2σ

1
√

2π
e−

y2
2 dy

Therefore:

P((misclassified as ω1) | ω2)P(ω2) + P((misclassified as ω2) | ω1)P(ω1) = Pe ·
1
2
+ Pe ·

1
2
= Pe

(c) What is the limit of Pe as σ goes to 0?

Solution: As σ goes to 0, a goes to∞, so the integral Pe goes to 0.
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3 Softmax Regression
Logistic regression directly models the probability of a point x belonging to class C as P(Y =
C|X = x) = s(w⊤x) where s is the sigmoid function s(γ) = 1/(1 + e−γ). (If you want a bias term α,
assume it is included as the last component of w, and each data point x has a 1 appended.) It is
limited to binary classification problems. While logistic regression can be applied to multi-class
classification with many-to-one or one-to-one approaches, there is a more elegant method.

Rather than modeling only P(Y = C|X = x), softmax regression models the entire categorical
distribution over k classes, P(Y = 1|X = x), P(Y = 2|X = x), ..., P(Y = k|X = x). It does so
by learning a linear model with weight vector wi for each of the k classes and turning them into
probabilities with the softmax function, si(z) = e−zi/(

∑k
j=1 e−z j), giving the predictions

P(Y = i|X = x) =
e−w⊤i x∑k
j=1 e−w⊤j x

.

The idea is that class i’s probability is proportional to e−w⊤i x. To make all the probabilities sum to 1,
the denominator is the sum of the numerators.

Note: For future reference, the most general form of the softmax function is si(z) = eβzi/(
∑k

j=1 eβz j),
where β ∈ [−∞,∞] is a user-defined hyperparameter. If β is negative, smaller inputs are mapped to
larger outputs. If β is positive, larger inputs are mapped to larger outputs. Here, we only consider
β = −1.

(a) Show that where k = 2, the softmax regression function has the same form as the logistic
regression function.

Solution:

P(Y = 1|X = x) =
e−w⊤1 x

e−w⊤1 x + e−w⊤2 x
=

1
1 + e−(w2−w1)⊤x

.

(b) In the default form we gave above, softmax regression is overparameterized—there are more
parameters than needed for the model. This should be evident in your answer to part (a).
Reformulate softmax regression so it requires fewer parameters.

Solution: We can divide out by one of the classes to remove it from the equation.

P(Y = k|X = x) =
e−w⊤k x∑k
j=1 e−w⊤j x

=
1

1 +
∑k−1

j=1 e−(w j−wk)⊤x
=

1

1 +
∑k−1

j=1 e−α
⊤
j x
,

where each α j = w j −wk is a vector of weights for classes 1 through k− 1. In this formulation,
the weights in the vector α j are implicitly comparing class j to the last class, k. We don’t need
an αk (which would be zero).

(c) Recall the logistic (aka binary cross-entropy) loss function (applied to a single training point),

L(ŷ, y) = −y log ŷ − (1 − y) log
(
1 − ŷ

)
.
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How would you design the analogous loss function L(ŷ1, ŷ2, . . . , ŷk, y1, y2, . . . , yk) for softmax
regression? Assume that for each training point, the input includes k class labels in [0, 1]
satisfying

∑k
i=1 yi = 1, and the k class predictions are ŷi = P(Y = i|X = x) (which also sum to 1

because we forced them to sum to 1).

Solution: The generalization is called the cross-entropy loss,

L(ŷ1, ŷ2, . . . , ŷk, y1, y2, . . . , yk) =
k∑

i=1

−yi log ŷi.
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