
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS5

1 Weight Sharing in CNNs
In this question, we will look at the mechanism of weight sharing in convolutions. Let’s start with
a 1-dimensional example. Suppose that we have a 9 dimensional input vector and compute a 1D
convolution with the kernel filter that has 3 weights (parameters).

k = [k1 k2 k3]T

x = [x1 x2 ... x9]T

(a) What’s the output dimension if we apply filter k with no padding and stride of 1? What’s the
first element of the output? What’s the last element?

(b) What’s the output dimension if we apply filter k with padding of size 1 and stride of 2?
What’s the first element of the output? What’s the second element?

(c) Recall that CNN filters have the property of weight sharing, meaning that different portions of
an image can share the same weight to extract the same set of features. Turns out convolution
is a linear operator and we can express it in the form of linear layers, i.e. x′ = Kx (assumes
that the bias term is zero).
Find K, the linear transformation matrix corresponding to the convolution applied in part (a).
(Hint:What is the dimension of K?)

DIS5,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

(d) Suppose that we no longer want to share weights spatially over the input, i.e. we go though the
same mechanics as convolution ”sliding window”, but for different locations within the input,
we apply different kernel. How does this change our matrix? How many weights do we
have now?

(e) Consider a 2-dimensional example with the following kernel filter and image. Using no
padding and a stride of 1, compute the output, and describe the effect of this filter.

k =
1
4

1 1
1 1

x =

1 2 3
4 5 6
7 8 9

(f) We want to know the general formula for computing the output dimension of a convolution
operation. Suppose we have a square input image of dimension W × W and a K × K kernel
filter. If we assume stride of 1 and no padding, what’s the output dimension W ′? What if
we applied stride of s and padding of size p, how would the dimension change?

(g) Let’s take what we’ve learnt into actual applications on image tasks. Suppose our input is
a 256 by 256 RGB image. We are also given a set of 32 filters, each with kernel size of
5. Conventionally in frameworks such as PyTorch, images are 3D tensors arranged in the
format of [channels, height, width]. In practice, it’s more common to have an
additional batch size dimension at the front, but here we ignore that to simplify the math.

DIS5,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

What is the shape of the input tensor? What is the shape of each kernel filter? (Hint: Both your
answers should have 3 dimensions.)

(h) Now apply convolution on our image tensor with no padding and stride of 2. What is the
output tensor’s dimension? Considering all kernel filters, how many weights do we have?
Had we not use CNN but MLP instead (with flattened image), how many weights does that
linear layer contain? Feel free to use a calculator for this question.

DIS5,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

2 Self-Attention and Transformers
Recall the attention mechanism from sequence-to-sequence modeling, where “attention” values
are computed for each input item in a sequence in order to determine how much an output should
“attend” to the corresponding value at each input’s position. In particular, we’ll be focusing on self-
attention, where attention values will be computed for each item in an input sequence of length n,
pictorally represented by the following diagram from lecture:

Figure 1: The self attention mechanism.

In self attention, we let the key, k, query q, and value v vectors be linear transformations of the
input: kt = Wkht, qt = Wqht, and vt = Wvht. For a given position in the input sequence, l, we
compute the value el,t = ql · kt for every position in the input sequence. We then apply the softmax
operation to each el,t over all the n items in the sequence (where t = 1 . . . n), which yields us values
αl,t. These alpha values tell us how much to “attend” to each item in the sequence to compute our
output, al =

∑
t αl,tvt.

DIS5,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

(a) What is the runtime complexity of the aforementioned self-attention operation, in big-O?
Briefly justify your answer. Assume that the values ht have dimensionality d.

(b) Consider the general version of the self-attention diagram, where we have multiple queries,
q1 . . . qn. Write the computation for all the a values a1 . . . an in matrix notation.

(c) Next, let’s consider the Transformer architecture, which applies multiple layers of self-attention
to process sequential data. Recall from lecture that we need four things to get Transformers
working in practice: (1) Positional Encodings, (2) Multi-Headed attention, (3) Adding non-
linearities, and (4) masked decoding. In the following questions, we’ll reason about different
choices of positional encodings and the purpose of multi-headed attention.

Unlike Recurrent Neural Networks (RNNs), Self-attention mechanisms alone do not explicitly
account for the relative position of each input in the sequence; that is, inputs far away from a
given position are not treated any differently than inputs that are very close to a given position.
In reality, we’d like to have some sort of encoding that allows us to take positions into account
(often times, words closer to a given position are more relevant than words extremely far away,
for example.)

Consider a positional encoding provided for each item in an input sequence that is absolute;
that is, the encoding value assigned to each item in the sequence is dependent only on its
absolute position in the sequence (first, second, third, etc.) Say that we use natural numbers
as our absolute positional encoding: we assign the first item in the sequence a value of 1, the
second item a value of 2, and so forth. What kind of issues might one anticipate with such an
encoding? How might you fix this with a better absolute encoding?

DIS5,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

(d) In general, describe the potential downside that the absolute encoding approaches may have as
positional encodings, and how we can improve on this with smarter approaches to positional
encoding (Hint: think about the encodings you saw in lecture.)

(e) Explain the purpose and advantages of multi-head attention, or having multiple (key, query,
value) pairs for every step in your input sequence. Give an example of structures in sequen-
tial problems that multi-headed attention could potentially serve useful for (Hint: think about
structures that occur in natural language.)

DIS5,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

	Weight Sharing in CNNs
	Self-Attention and Transformers

