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1 Motivation: Dimensionality reduction
In this problem sheet we explore the motivation for general dimensionality reduction in machine
learning and derive from first principles why projection on the first eigenvectors of the covariance
matrix of the data has some favorable properties. A deeper understanding on the advantages of
PCA and other dimensionality reduction methods is conveyed in the homework.

In general, we assume the following scenario: Suppose we are given n points x1, . . . , xn in Rd and
the dimension of the feature vectors is d (very big, like 103). By dimensionality reduction, we refer
to a mapping ψ : Rd 7→ Rk that maps vectors from Rd to Rk with k ≪ d.

(a) (Motivation) Given n feature vectors of d dimensions, in which regimes of n, d and why would
you want to reduce the dimensionality in practical machine learning applications? Think about
the concept of regularization studied extensively in the past few weeks.

(b) (Computational aspect) Revisit this in the context of linear regression. What is the compu-
tational complexity of performing a linear regression of n data points in d dimensions with
n > d (say by solving the normal equations when X⊤X is invertible)? If the projection was
given to you for free, approximately how many operations would you save if you reduced the
dimension from d = 103 to d = 10?
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2 The Minimizing Reconstruction Error Perspective
One perspective on PCA is minimizing the perpendicular distance between the principle compo-
nent subspace and the data points. Let’s say we want to find the best 1D space that minimizes the
reconstruction error. This is very closely linked to the interpretation of maximizing variance along
a vector, which is covered in your homework 4.

(a) Show the (vector) projection of the feature vector x onto the subspace spanned by a unit vector
w is

Pw(x) = w
(
x⊤w
)
. (1)

(b) Now, we want to choose w to minimize the reconstruction error. Show that taking w as the
minimizer for the corresponding problem below gives us the same result as before.

min
w:|w|=1

n∑
i=1

∥xi − Pw(xi)∥22 (2)

150

The above image serves as a useful visualization. Consider mean centered data. A data point
has some fixed distance from the origin. We may consider finding a lower dimensional rep-
resentation as either maximizing the variance of the projecting or minimizing the projection
distance. The squared quantities must sum to a constant (the distance to the origin or original
variance) thus minimizing one is equivalent to maximizing the other.
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3 t-sne? Never heard of her
In this question we’ll explore t-sne, which stands for t-distributed stochastic neighborhood embed-
dings. This is a nonlinear dimensionality reduction technique (as opposed to PCA), and is great
when dealing with high dimensional data that isn’t linear in fashion.

For the purposes of this problem, assume that we have a dataset X = {x1, x2, . . . , xn} where each
xi is d-dimensional. We’ll project this down into Y = {y1, y2, . . . , yn}, where each y is 2 or 3
dimensions. Y is initially generated randomly (either through a gaussian, or another process, and
then iteratively modified through gradient descent).

We’ll walk through the process outlined in the original t-sne paper, linked here.

(a) The classical stochastic neighborhood embedding algorithm generates probabilities

p j|i =
exp
(
−∥xi − x j∥

2
2/(2σ

2
i )
)

∑
k,i exp

(
−∥xi − xk∥

2
2/(2σ

2
i )
) .

Why did we choose to model probabilities this way? What does the σi term represent?

(b) p is not symmetric i.e. pi| j , p j|i generally. When does this occur, and what is one way to fix
the p matrix so that it is symmetric (assuming we don’t change σi, σ j?)

(c) Given lower dimensional projections yi, t-SNE defines the following:

qi j =
(1 + ∥yi − y j∥

2
2)−1∑

k,i(1 + ∥yi − yk∥
2
2)−1

.

Contrast this to above where we modeled similarities using gaussians. Why might using a
t-distribution be better and what problems can it potentially solve?

(d) yi is then optimized through gradient descent. In order to do this, we need to define a cost
function to optimize. t-SNE uses the cost function

C = KL(P||Q) =
∑

i

∑
j

pi j log
 pi j

qi j

.
Why is the KL-divergence used here? And what is ∂C

∂yi
?
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https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
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