Co 189 / 289A  Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saced Daremi DIS7

1 Gaussian Mixture Models

Let Z represent the (unobserved) assignment of a given observation to one of the K clusters:
Z ~ Categorical(my, . ..,mg),

where m; is the probability that a randomly selected observation is assigned to cluster k. Condi-
tioned on Z, observations are assumed to be Gaussian distributed,

X|Z=i~NW,x).
Here, u; and X; are the mean and covariance matrix of the i-th cluster.

We let (X1,72)),...,(X,,Z,) denote the set of observations and their corresponding cluster assign-
ments, under i.i.d. assumptions.

(a) What is the set of parameters 6 that we can learn from the data?

(b) Write down the joint log-likelihood function for a single observation X; and its corresponding
cluster assignment Z;, log py(X;, Z;).

(c) Why is maximizing ), log ps(X;, Z;) impossible?
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(d) Instead, we consider the marginalized log-likelihood function, €pareinai(6) = 2o, log pe(X;).
Write down a formula for €arginai ().

(e) Suggest an iterative strategy to learn 6?7 What guarantees would this approach provide?

2 The EM algorithm

This question is the second part of the previous question; all notations and assumptions are the
same.

Another prevalent approach for fitting Gaussian Mixture Models, and other latent variable models,
is to use the so-called Expectation-Minimization algorithm. While we won’t cover the details of
the EM implementation in this discussion, we here provide a high-level overview of the algorithm.

Instead of maximizing the marginalized log-likelihood function, the EM algorithm aims to maxi-
mize a lower bound ¥ (g, 6) on the marginalized log-likelihood function, such that

brgina0) 2 T (9,0) = ) Filgi,0), (1)

i=1

where Fi(q;, 0) := YK, gi(z) log 222,

Here, g; can be seen as an arbitrary distribution over the K clusters for the i-th observation. Because
¥ has two arguments, the EM algorithm will iteratively aim to optimize over both ¢; and 6, as we
will see later.

(a) We will first demonstrate Equation (I). Show that for an arbitrary data point i, the following
inequality holds for any distribution ¢;(z) over cluster assignments:

po(Xi, Z; = 2)

=7 l-,G .
qi(z) 7i49)

K
log py(X;) = ) qi(2) log

z=1
Then, show that Equation (T]) holds. This inequality is extremely important, and serves as the
basis of the EM algorithm, as well as other important algorithms in machine learning, such as

variational autoencoders.
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Hint: You might find the following application of Jensen inequality useful. For any a1, ...ak
s.t. >;@; = 1, and any positive fi, ... fx

Za/ilogfi SlogZaiﬁ.

(b) The inequality we have showed holds for any distributions ¢y, ...¢g,. For a fixed 6, the EM
algorithm aims to optimize over the distributions ¢, . .. g,, in order to make ¥ (g, ) as close as
possible t0 {margina(#). Once the optimal ¢g; are found, 6 is updated to maximize ¥ (g, 6). This
yields the following iterative update at iteration ¢ of the algorithm:

g/"" = argmax, F(g;,0") (E-step)

0D = arg max, F (¢, 0) (M-step)

Let 8 be fixed. Show that when for any i < N and z < K, q;(z) = po(Z; = z | X)),
gmarginal(g) = Z Ti(Qis 9)
i=1

What optimal ¢; should be used in the E-step?
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