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1 Gaussian Mixture Models
Let Z represent the (unobserved) assignment of a given observation to one of the K clusters:

Z ∼ Categorical(π1, . . . , πK),

where πk is the probability that a randomly selected observation is assigned to cluster k. Condi-
tioned on Z, observations are assumed to be Gaussian distributed,

X | Z = i ∼ N(µi,Σi).

Here, µi and Σi are the mean and covariance matrix of the i-th cluster.

We let (X1,Z1), . . . , (Xn,Zn) denote the set of observations and their corresponding cluster assign-
ments, under i.i.d. assumptions.

(a) What is the set of parameters θ that we can learn from the data?

(b) Write down the joint log-likelihood function for a single observation Xi and its corresponding
cluster assignment Zi, log pθ(Xi,Zi).

(c) Why is maximizing
∑n

i=1 log pθ(Xi,Zi) impossible?

DIS7,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1



(d) Instead, we consider the marginalized log-likelihood function, ℓmarginal(θ) =
∑n

i=1 log pθ(Xi).
Write down a formula for ℓmarginal(θ).

(e) Suggest an iterative strategy to learn θ? What guarantees would this approach provide?

2 The EM algorithm
This question is the second part of the previous question; all notations and assumptions are the
same.

Another prevalent approach for fitting Gaussian Mixture Models, and other latent variable models,
is to use the so-called Expectation-Minimization algorithm. While we won’t cover the details of
the EM implementation in this discussion, we here provide a high-level overview of the algorithm.

Instead of maximizing the marginalized log-likelihood function, the EM algorithm aims to maxi-
mize a lower bound F (q, θ) on the marginalized log-likelihood function, such that

ℓmarginal(θ) ≥ F (q, θ) =
n∑

i=1

Fi(qi, θ), (1)

where Fi(qi, θ) :=
∑K

z=1 qi(z) log pθ(Xi,Zi=z)
qi(z) .

Here, qi can be seen as an arbitrary distribution over the K clusters for the i-th observation. Because
F has two arguments, the EM algorithm will iteratively aim to optimize over both qi and θ, as we
will see later.

(a) We will first demonstrate Equation (1). Show that for an arbitrary data point i, the following
inequality holds for any distribution qi(z) over cluster assignments:

log pθ(Xi) ≥
K∑

z=1

qi(z) log
pθ(Xi,Zi = z)

qi(z)
= Fi(qi, θ).

Then, show that Equation (1) holds. This inequality is extremely important, and serves as the
basis of the EM algorithm, as well as other important algorithms in machine learning, such as
variational autoencoders.
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Hint: You might find the following application of Jensen inequality useful. For any α1, . . . αK

s.t.
∑

i αi = 1, and any positive f1, . . . fK∑
i

αi log fi ≤ log
∑

i

αi fi.

(b) The inequality we have showed holds for any distributions q1, . . . qn. For a fixed θ, the EM
algorithm aims to optimize over the distributions q1, . . . qn, in order to make F (q, θ) as close as
possible to ℓmarginal(θ). Once the optimal qi are found, θ is updated to maximize F (q, θ). This
yields the following iterative update at iteration t of the algorithm:q

(t+1)
i = arg maxqi F (qi, θ

(t)) (E-step)
θ(t+1) = arg maxθ F (q(t+1), θ) (M-step)

Let θ be fixed. Show that when for any i ≤ N and z ≤ K, qi(z) = pθ(Zi = z | Xi),

ℓmarginal(θ) =
n∑

i=1

Fi(qi, θ).

What optimal qi should be used in the E-step?
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