Co 189 / 289A  Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saced Daremi DIS7

1 Gaussian Mixture Models

Let Z represent the (unobserved) assignment of a given observation to one of the K clusters:
Z ~ Categorical(my, . ..,mg),

where ;. is the probability that a randomly selected observation is assigned to cluster k. Condi-
tioned on Z, observations are assumed to be Gaussian distributed,

X|Z=i~N,X%).

Here, u; and X; are the mean and covariance matrix of the i-th cluster.

We let (X1,Z2)),...,(X,,Z,) denote the set of observations and their corresponding cluster assign-
ments, under i.i.d. assumptions.
(a) What is the set of parameters 6 that we can learn from the data?

Solution: In Gaussian mixture models, we can learn cluster proportions 7m;, mean vectors g,
and covariance matrices X; for each cluster k, that is

6= (71'1,...,HK,/ll,...,/lK,Zl,...,ZK).

(b) Write down the joint log-likelihood function for a single observation X; and its corresponding
cluster assignment Z;, log py(X;, Z;).

Solution: We have that
log po(X;, Z; = k) = log p(Z; = k) +log p(X; | Z; = k)
= log m; + log f(X; | px, Zk)s

where f(X; | u, Z;) is the probability density function of a Gaussian distribution with mean g
and covariance matrix ;.

(c) Why is maximizing '\, log py(X;, Z;) impossible?

Solution: The cluster assignments Z; are unobserved, meaning that the joint likelihood func-
tion cannot be evaluated, and in particular, cannot be maximized.
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(d) Instead, we consider the marginalized log-likelihood function, €pareinai(6) = 2o, log pe(X;).
Write down a formula for €arginai ().

Solution: We apply the law of total probabilities to get that:

n K
brargina(®) = )" log >” po(Xi, Z: = o).

i=1 k=1

This formula simplifies as

n K
fmarginal(g) = Z IOg Z ﬂkf(Xi | His Zp)-

i=1 k=1

(e) Suggest an iterative strategy to learn 6?7 What guarantees would this approach provide?
Solution: A natural approach would be to employ gradient ascent on the marginalized log-
likelihood function.

In partiCUIara we can ComPUte Vngmarginal(g), Vygmarginal(e)a and Vmearginal(H), and consider the
following iterative update:

t+1 t
7T§<+ b= ﬂ'](() + avnfmarginal(g(t))’
1
/'L;(H : = ,LL;{I) + avygmarginal(g(t))’
t+1 t
2/({+ b= Z/({) + QVZ[marginal(Q(t)),

where « is the learning rate.

Unfortunately, gradient ascent has no convergence guarantees in this problem, as the likelihood
function is not concave. While the log PDF of a Gaussian distribution is concave, the log of a
sum of Gaussian PDFs is indeed typically not concave.

2 The EM algorithm

This question is the second part of the previous question; all notations and assumptions are the
same.

Another prevalent approach for fitting Gaussian Mixture Models, and other latent variable models,
is to use the so-called Expectation-Minimization algorithm. While we won’t cover the details of
the EM implementation in this discussion, we here provide a high-level overview of the algorithm.

Instead of maximizing the marginalized log-likelihood function, the EM algorithm aims to maxi-
mize a lower bound ¥ (g, 6) on the marginalized log-likelihood function, such that

bargina 0) = F(q,0) = ) Ti(g:,0), (1)
i=1
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Here, g; can be seen as an arbitrary distribution over the K clusters for the i-th observation. Because
¥ as two arguments, the EM algorithm will iteratively aim to optimize over both g; and 6, as we
will see in the next part. Because ¥ as two arguments, the EM algorithm will iteratively aim to
optimize over both ¢; and 6, as we will see later.

(a) We will first demonstrate Equation (I). Show that for an arbitrary data point i, the following
inequality holds for any distribution ¢;(z) over cluster assignments:

PO(AQ,ZQ = Z)

=Ji i,g.
qi(2) Fila:6)

K
log py(X;) = ) qi(2) log

z=1

Then, show that Equation (T]) holds. This inequality is extremely important, and serves as the
basis of the EM algorithm, as well as other important algorithms in machine learning, such as
variational autoencoders.

Hint: You might find the following application of Jensen inequality useful. For any oy, ... axk
s.t. Y;a; = 1, and any positive fi,... fx

Za/ilogfi SlogZaiﬁ.

Solution: By the law of total probabilities

K
log py(X,) = log )" p(X;,Z = 2)

z=1

Let g; be an arbitrary distribution over cluster assignments 1,... K. Assuming all g;(z) > 0, we
have that

po(Xi,Z = 2)
qi(2)

b

K K
log » pu(XiZ=2) =log Y i)
z=1 z=1

and by application of Jensen’s inequality,

po(Xi,Z =72)

K K
lo Xi,Z:ZZ iZlO
g;lm ) ;q<> e

Summing these inequalities across all data points conclude the proof.

(b) The inequality we have showed holds for any distributions ¢y, ...q,. For a fixed 8, the EM
algorithm aims to optimize over the distributions ¢, . .. g,, in order to make ¥ (g, ) as close as
possible t0 fmareina(6). Once the optimal ¢g; are found, 6 is updated to maximize ¥ (g, §). This
yields the following iterative update at iteration ¢ of the algorithm:

qEHl) = argmax,, ¥ (g;,0") (E-step)

0D = arg max, F (¢"*",0) (M-step)
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Let 8 be fixed. Show that when for any i < N and z < K, q;(z) = py(Z; = z | X)),
gmarginal(e) = Z Ti(q:" 9)
i=1

What optimal ¢g; should be used in the E-step?
Solution: Plugging in g; = pe(Z; | X;) into Fi(g;, 0) yields

S pe(Xi,Z; = 2)
Fi(po(Z; | X;),0) = (Z = 7| X;)log LL20 21— %)
" ‘ZM9 & puZ =21 X,)
K
= pui = 2| X)) log pu(X))
z=1

= log ps(X)),

Summing over all is, we get that €narina(0) = 21— Fi(gi, 0).
Since Cmareinal(0) is an upper bound for )| Fi(g;, 0), we have showed that

bnarinat(0) = D Fipo(Zi 1 X, 0) = ) Filgi,0),
i=1 i=1

or in another words, that py(Z; | X;) is an optimal choice for g;.
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