
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS8

1 The Classical Bias-Variance Tradeoff
Consider a random variable X, which has unknown mean µ and unknown variance σ2. Given n iid
realizations of training samples X1 = x1, X2 = x2, . . . , Xn = xn from the random variable, we wish
to estimate the mean of X. We will call our estimate of µ the random variable X̂, which has mean
µ̂. There are a few ways we can estimate µ given the realizations of the n samples:

1. Average the n samples: x1+x2+...+xn
n .

2. Average the n samples and one sample of 0: x1+x2+...+xn
n+1 .

3. Average the n samples and n0 samples of 0: x1+x2+...+xn
n+n0

.

4. Ignore the samples: just return 0.

In the parts of this question, we will measure the bias and variance of each of our estimators. The
bias is defined as

E[X̂ − µ]

and the variance is defined as
Var[X̂].

(a) What is the bias of each of the four estimators above?
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(b) What is the variance of each of the four estimators above?

(c) Suppose we have constructed an estimator X̂ from some samples of X. We now want to know
how well X̂ estimates a new independent sample of X. Denote this new sample by X′. Derive
a general expression for E[(X̂ − X′)2] in terms of σ2 and the bias and variance of the estimator
X̂. Similarly, derive an expression for E[(X̂ −µ)2]. Compare the two expressions and comment
on the differences between them.
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(d) It is a common mistake to assume that an unbiased estimator is always “best.” Let’s explore
this a bit further. Compute E[(X̂ − µ)2] for each of the estimators above.

(e) Demonstrate that the four estimators are each just special cases of the third estimator, but with
different instantiations of the hyperparameter n0.

(f) What happens to bias as n0 increases? What happens to variance as n0 increases?
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2 Decision Trees
Consider constructing a decision tree on data with d features and n training points where each
feature is real-valued and each label takes one of m possible values. The splits are two-way, and
are chosen to maximize the information gain. We only consider splits that form a linear boundary
parallel to one of the axes. We will only consider a standalone decision tree and not a random
forest (hence no randomization). Recall the definition of information gain:

IG(node) = H(S ) −
|S l|H(S l) + |S r|H(S r)

|S l| + |S r|

where S is set of samples considered at node, S l is the set of samples remaining in the left sub-tree
after node, S r is the set of samples remaining in the right sub-tree after node, and H(S ) is the
entropy over a set of samples:

H(S ) = −
C∑

i=1

pi log
(
pi
)

Here, C is the number of classes, and pi is the proportion of samples in S labeled as class i.

(a) Intuitively, how does the bias-variance trade-off relate to the depth of a decision tree?

(b) Draw the graph of entropy H(pc) when there are only two classes C and D, with pD = 1 − pC.
Is the entropy function strictly concave, concave, strictly convex, or convex? Why? What is
the significance?

Hint: For the significance, recall the information gain.
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(c) Prove or give a counter-example: The information gain at the root is at least as much as the
information gain at any other node.
Hint: Think about the XOR function. Precisely, consider the set

S = {(0, 0; 0), (0, 1; 1), (1, 0; 1), (1, 1; 0)},

where the first two entries in every sample are features, and the last one is the label.

(d) Prove or give a counter-example: In any path from the root to a leaf, the same feature will
never be split on twice.
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3 Curse of Dimensionality in Nearest Neighbor Classification
We have a training set: (x(1), y(1)), . . . , (x(n), y(n)), where x(i) ∈ Rd. To classify a new point x, we can
use the nearest neighbor classifier:

class(x) = y(i∗) where x(i∗) is the nearest neighbor of x.

Assume any data point x that we may pick to classify is inside the Euclidean ball of radius 1,
i.e. ∥x∥2 ≤ 1. To be confident in our prediction, in addition to choosing the class of the nearest
neighbor, we want the distance between x and its nearest neighbor to be small, within some positive
ϵ:

∥x − x(i∗)∥2 ≤ ϵ for all ∥x∥2 ≤ 1. (1)

What is the minimum number of training points we need for inequality (1) to hold (assuming the
training points are well spread)? How does this lower bound depend on the dimension d?

Hint: Think about the volumes of the hyperspheres in d dimensions.
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