
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS8

1 The Classical Bias-Variance Tradeoff
Consider a random variable X, which has unknown mean µ and unknown variance σ2. Given n iid
realizations of training samples X1 = x1, X2 = x2, . . . , Xn = xn from the random variable, we wish
to estimate the mean of X. We will call our estimate of µ the random variable X̂, which has mean
µ̂. There are a few ways we can estimate µ given the realizations of the n samples:

1. Average the n samples: x1+x2+...+xn
n .

2. Average the n samples and one sample of 0: x1+x2+...+xn
n+1 .

3. Average the n samples and n0 samples of 0: x1+x2+...+xn
n+n0

.

4. Ignore the samples: just return 0.

In the parts of this question, we will measure the bias and variance of each of our estimators. The
bias is defined as

E[X̂ − µ]

and the variance is defined as
Var[X̂].

(a) What is the bias of each of the four estimators above?

Solution: E[X̂ − µ] = E[X̂] − µ, so we have the following biases:

(a) E[X̂] = E[ X1+X2+...+Xn
n ] = nµ

n =⇒ bias = 0

(b) E[X̂] = E[ X1+X2+...+Xn
n+1 ] = nµ

n+1 =⇒ bias = − 1
n+1µ

(c) E[X̂] = E[ X1+X2+...+Xn
n+n0

] = nµ
n+n0

=⇒ bias = − n0
n+n0
µ

(d) E[X̂] = 0 =⇒ bias = −µ

(b) What is the variance of each of the four estimators above?

Solution: The two key identities to remember are Var[A + B] = Var[A] + Var[B] (when A and
B are independent) and Var[kA] = k2 Var[A], where A and B are random variables and k is a
constant.

(a) Var[X̂] = Var[ X1+X2+...+Xn
n ] = 1

n2 Var[X1 + X2 + . . . + Xn] = 1
n2 (nσ2) = σ

2

n

(b) Var[X̂] = Var[ X1+X2+...+Xn
n+1 ] = 1

(n+1)2 Var[X1 + X2 + . . . + Xn] = 1
(n+1)2 (nσ2) = n

(n+1)2σ
2
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(c) Var[X̂] = Var[ X1+X2+...+Xn
n+n0

] = 1
(n+n0)2 Var[X1 + X2 + . . . + Xn] = 1

(n+n0)2 (nσ2) = n
(n+n0)2σ

2

(d) Var[X̂] = 0

(c) Suppose we have constructed an estimator X̂ from some samples of X. We now want to know
how well X̂ estimates a new independent sample of X. Denote this new sample by X′. Derive
a general expression for E[(X̂ − X′)2] in terms of σ2 and the bias and variance of the estimator
X̂. Similarly, derive an expression for E[(X̂ −µ)2]. Compare the two expressions and comment
on the differences between them.

Solution: Since X̂ is a function of X, we conclude that the random variables X̂ and X′ are
independent of each other. Now we provide two ways to solve the first problem.

Method 1: In this method, we use the trick of adding and subtracting a term to derive the
desired expression:

E[(X̂ − X′)2] = E[(X̂ − µ + µ − X′)2]
= E[(X̂ − µ)2] + E[(µ − X′)2]︸         ︷︷         ︸

=Var(X′)=σ2

= E[(X̂ − µ)2] + σ2

= E[(X̂ − E[X̂] + E[X̂] − µ)2] + σ2

= E[(X̂ − E[X̂])2]︸             ︷︷             ︸
=Var(X̂)

+ (E[X̂] − µ)2︸        ︷︷        ︸
=bias2

+2E[(X̂ − E[X̂]) · (E[X̂] − µ)]︸                             ︷︷                             ︸
=0

+σ2

Method 2: In this method, we make use of the definition of variance. We have

E[(X̂ − X′)2] = E[X̂2] + E[X′2] − 2E[X̂X′]
= (Var(X̂) + (E[X̂])2) + (Var(X′) + (E[X′])2) − 2E[X̂]E[X′]︸       ︷︷       ︸

independence

= (E[X̂]2 − 2E[X̂]E[X′] + E[X′]2) + Var(X̂) + Var(X′)︸  ︷︷  ︸
=Var(X)

= (E[X̂] − E[X′]︸︷︷︸
=E[X]=µ

)2 + Var(X̂) + Var(X)

= (E[X̂] − µ)2︸        ︷︷        ︸
=bias2

+Var(X̂) + σ2

The first term is equivalent to the bias of our estimator squared, the second term is the variance
of the estimator, and the last term is the irreducible error.

Now let’s do E[(X̂ − µ)2].

E[(X̂ − µ)2] = E[X̂2] + E[µ2] − 2E[X̂µ] (1)
= (Var(X̂) + E[X̂]2) + (Var(µ) + E[µ]2) − 2E[X̂µ] (2)
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= (E[X̂]2 − 2E[X̂µ] + E[µ]2) + Var(X̂) + Var(µ) (3)
= (E[X̂] − E[µ])2 + Var(X̂) + Var(µ) (4)
= (E[X̂] − µ)2 + Var(X̂). (5)

Notice that these two expected squared errors resulted in the same expressions except for the
σ2 in E[(X̂ − X′)2]. The error σ2 is considered “irreducible error” because it is associated with
the noise that comes from sampling from the distribution of X. This term is not present in the
second derivation because µ is a fixed value that we are trying to estimate.

(d) It is a common mistake to assume that an unbiased estimator is always “best.” Let’s explore
this a bit further. Compute E[(X̂ − µ)2] for each of the estimators above. Solution: Adding the
previous two answers:

(a) σ
2

n

(b) 1
(n+1)2 (µ2 + nσ2)

(c) 1
(n+n0)2 (n2

0µ
2 + nσ2)

(d) µ2

(e) Demonstrate that the four estimators are each just special cases of the third estimator, but with
different instantiations of the hyperparameter n0.

Solution: The derivation for the third estimator works for any value of n0. The first estimator
is just the third estimator with n0 set to 0:

x1 + x2 + . . . + xn

n + n0
=

x1 + x2 + . . . + xn

n + 0
+

x1 + x2 + . . . + xn

n
.

The second estimator is just the third estimator with n0 set to 1:

x1 + x2 + . . . + xn

n + n0
=

x1 + x2 + . . . + xn

n + 1
.

The last estimator is the limiting behavior as n0 goes to∞. In other words, we can get arbitrarily
close to the fourth estimator by setting n0 very large:

lim
n0→∞

x1 + x2 + . . . + xn

n + n0
= 0.

(f) What happens to bias as n0 increases? What happens to variance as n0 increases?

Solution:
One reason for increasing the samples of n0 is if you have reason to believe that X is centered
around 0. In increasing the number of zeros we are injecting more confidence in our belief
that the distribution is centered around zero. Consequently, in increasing the number of ”fake”
data, the variance decreases because your distribution becomes more peaked. Examining the
expressions for bias and variance for the third estimator, we can see that larger values of n0

DIS8,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3



result in decreasing variance ( n
(n+n0)2σ

2) but potentially increasing bias ( n0µ

n+n0
). Hopefully you

can see that there is a trade-off between bias and variance. Using an unbiased estimator is
not always optimal nor is using an estimator with small variance always optimal. One has to
carefully trade-off the two terms in order to obtain minimum squared error.
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2 Decision Trees
Consider constructing a decision tree on data with d features and n training points where each
feature is real-valued and each label takes one of m possible values. The splits are two-way, and
are chosen to maximize the information gain. We only consider splits that form a linear boundary
parallel to one of the axes. We will only consider a standalone decision tree and not a random
forest (hence no randomization). Recall the definition of information gain:

IG(node) = H(S ) −
|S l|H(S l) + |S r|H(S r)

|S l| + |S r|

where S is set of samples considered at node, S l is the set of samples remaining in the left sub-tree
after node, S r is the set of samples remaining in the right sub-tree after node, and H(S ) is the
entropy over a set of samples:

H(S ) = −
C∑

i=1

pi log
(
pi
)

Here, C is the number of classes, and pi is the proportion of samples in S labeled as class i.

(a) Intuitively, how does the bias-variance trade-off relate to the depth of a decision tree?

Solution: If a decision tree is very deep, the model is likely to overfit, and thereby increase
variance. Intuitively, there are many conditions checked before making a decision, which
makes the decision rule too fine-grained and sensitive to small perturbations; for example, if
only one of the many conditions is not satisfied, this might result in a completely different
prediction. On the other hand, if the tree is very shallow, this might increase bias. In this case,
the decisions are too “coarse”.

(b) Draw the graph of entropy H(pc) when there are only two classes C and D, with pD = 1 − pC.
Is the entropy function strictly concave, concave, strictly convex, or convex? Why? What is
the significance?

Hint: For the significance, recall the information gain.

Solution: The function is strictly concave. Notice that the function −x log x is strictly concave

in [0, 1], and a sum of strictly concave functions is strictly concave.
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Significance: Suppose we pick two points on the entropy curve, then draw a line segment
connecting them. Because the entropy curve is strictly concave, the interior of the line segment
is strictly below the curve. Any point on that segment represents a weighted average of the two
entropies for suitable weights. If you unite the two sets into one parent set, the parent set’s
value pC is the weighted average of the children’s pc’s. Therefore, the point directly above that
point on the curve represents the parent’s entropy. The information gain is the vertical distance
between them. So the information gain is positive unless the two child sets both have exactly
the same pC and lie at the same point on the curve. Note that this is why we can also pick even
simpler strictly concave functions (like H′(p) = p(1 − p)) which will work nearly as well.

On the other hand, for the graph on the right, plotting the % misclassified, if we draw a line
segment connecting two points on the curve, the segment might lie entirely on the curve. In that
case, uniting the two child sets into one, or splitting the parent set into two, changes neither the
total misclassified sample points nor the weighted average of the % misclassified. The bigger
problem, though, is that many different splits will get the same weighted average cost; this test
doesn’t distinguish the quality of different splits well.

(c) Prove or give a counter-example: The information gain at the root is at least as much as the
information gain at any other node.
Hint: Think about the XOR function. Precisely, consider the set

S = {(0, 0; 0), (0, 1; 1), (1, 0; 1), (1, 1; 0)},

where the first two entries in every sample are features, and the last one is the label.

Solution: False. As suggested in the hint, we consider the XOR function. Then, H(S ) = 1.
The first split is done based on the first feature, which gives S l = {(0, 0; 0), (0, 1; 1)} and S r =

{(1, 0; 1), (1, 1; 0)}; denote the corresponding nodes as childl and childr respectively. This gives
H(S l) = 1 and H(S r) = 1. The information gain of the first split is:

IG(root) = H(S ) −
|S l|H(S l) + |S r|H(S r)

|S l| + |S r|
= 0

Now we further split S l and S r according to the second feature, which gives 4 leaves of 1
sample each. Denote the leaf samples corresponding to S r as Lr,1 and Lr,2, and accordingly
denote by Ll,1 and Ll,2 the leaves corresponding to S l. Now we have

IG(childl) = H(S l) −
1 · H(Ll,1) + 1 · H(Ll,2)

1 + 1
= 1

and analogously IG(childr) = 1. Therefore, the information gain at each of the child nodes is
1, while the information gain at the root is 0.
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root

childl childr

S

Sl Sr

leaf1 leaf2 leaf3 leaf4

Ll,1 Lr,2Lr,1Ll,2

(d) Prove or give a counter-example: In any path from the root to a leaf, the same feature will
never be split on twice.

Solution: False. Example: one dimensional feature space with training points of two classes
x and o arranged as xxxooooxxx.
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3 Curse of Dimensionality in Nearest Neighbor Classification
We have a training set: (x(1), y(1)), . . . , (x(n), y(n)), where x(i) ∈ Rd. To classify a new point x, we can
use the nearest neighbor classifier:

class(x) = y(i∗) where x(i∗) is the nearest neighbor of x.

Assume any data point x that we may pick to classify is inside the Euclidean ball of radius 1,
i.e. ∥x∥2 ≤ 1. To be confident in our prediction, in addition to choosing the class of the nearest
neighbor, we want the distance between x and its nearest neighbor to be small, within some positive
ϵ:

∥x − x(i∗)∥2 ≤ ϵ for all ∥x∥2 ≤ 1. (6)

What is the minimum number of training points we need for inequality (6) to hold (assuming the
training points are well spread)? How does this lower bound depend on the dimension d?

Hint: Think about the volumes of the hyperspheres in d dimensions.

Solution: Let B0 be the ball centered at the origin, having radius 1 (inside which we assume our
data lies). Let Bi(ϵ) be the ball centered at x(i), having radius ϵ. For inequality (6) to hold, for any
point x ∈ B0, there must be at least one index i such that x ∈ Bi(ϵ). This is equivalent to saying that
the union of B1(ϵ), . . . , Bn(ϵ) covers the ball B0. Let vol(B) indicate the volume of object B, then
we have

n∑
i=1

vol(Bi(ϵ)) = nvol(B1(ϵ)) ≥ vol(∪n
i=1Bi(ϵ)) ≥ vol(B0).

where the last inequality holds because we are assuming the union of B1(ϵ), . . . , Bn(ϵ) covers the
ball B0. This implies

n ≥
vol(B0)

vol(B1(ϵ))
=

c(1d)
cϵd

=
1
ϵd

Where the constant c is dependent on the formula for the volume of a hypersphere in d dimensions.

Note that we can pick 1
ϵd

training points and still satisfy (6) only if all the training points are well
spread (the union of B1(ϵ), . . . , Bn(ϵ) covers the ball B0).

This lower bound suggests that to make an accurate prediction on high-dimensional input, we need
exponentially many samples in the training set. This exponential dependence is sometimes called
the curse of dimensionality. It highlights the difficulty of using non-parametric methods for solving
high-dimensional problems.
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