
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi DIS9

1 Concerns about Randomness
One may be concerned that the randomness introduced in random forests may cause trouble. For
example, some features or sample points may never be considered at all. In this problem we will
be exploring this phenomenon.

(a) Consider n training points in a feature space of d dimensions. Consider building a random
forest with T binary trees, each having exactly h internal nodes. Let m be the number of
features randomly selected (from among d input features) at each tree node. For this setting,
compute the probability that a certain feature (say, the first feature) is never considered for
splitting in any tree node in the forest.

Solution: The probability that it is not considered for splitting in a particular node of a partic-
ular tree is 1 − m

d . The subsampling of m features at each treenode is independent of all others.
There is a total of ht treenodes and hence the final answer is (1 − m

d)hT .

(b) Now let us investigate the possibility that some sample point might never be selected. Suppose
each tree employs n′ = n bootstrapped (sampled with replacement) training sample points.
Compute the probability that a particular sample point (say, the first sample point) is never
considered in any of the trees.

Solution: The probability that it is not considered in one of the trees is (1 − 1
n)n, which ap-

proaches 1/e as n → ∞. Since the choice for every tree is independent, the probability that it
is not considered in any of the trees is (1 − 1

n)nT , which approaches e−T as n→ ∞.

(c) Compute the values of the two probabilities you obtained in parts (b) and (c) for the case where
there are n = 50 training points with d = 5 features each, T = 25 trees with h = 8 internal
nodes each, and we randomly select m = 1 potential splitting features in each treenode. You
may leave your answer in a fraction and exponentiated form, e.g.,

(
51
100

)2
. What conclusions can

you draw about the concerns of not considering a feature or sample mentioned at the beginning
of the problem?

Solution: (4
5)200 ≈ 4.15 ∗ 10−20 and (49

50)1250 ≈ 1.07 ∗ 10−11. It is quite unlikely that a feature
will be missed, and extremely unlikely a sample will be missed.

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

2 Probabilistic Graphical Models
Recall that we can represent joint probability distributions with directed acyclic graphs (DAGs).
Let G be a DAG with vertices X1, ..., Xk. If P is a (joint) distribution for X1, ..., Xk with (joint)
probability mass function p, we say that G represents P if

p(x1, · · · , xk) =
k∏

i=1

P(Xi = xi|pa(Xi)), (1)

where pa(Xi) denotes the parent nodes of Xi. (Recall that in a DAG, node Z is a parent of node X
iff there is a directed edge going out of Z into X.)

Consider the following DAG

Z

YX S

Figure 1: G, a DAG

(a) Write down the joint factorization of PS ,X,Y,Z(s, x, y, z) implied by the DAG G shown in Figure 1.

Solution:

PS ,X,Y,Z(s, x, y, z) = P(X = x)P(Z = z)P(Y = y|X = x,Z = z)P(S = s|X = x,Y = y) .

(b) Is S ⊥ Z | Y?

Solution: No. As a counterexample, consider the case where all nodes represent binary ran-
dom variables, P(X = 1) = P(Z = 1) = 0.5, Y = X ⊗ Z, and S = X ⊗ Y , where ⊗ is the XOR
operator. Then we can see that S = Z, whereas knowing Y does not fully determine S or Z.

A version of these solutions from a previous semester erroneously said that this conditional
independence did hold. As a result, you may have wrongly heard in section that this statement
is true, via faulty algebraic manipulation and/or other algorithms such as the Bayes ball (d-
separation). Running these algorithms correctly should show that S and Z are indeed not
conditionally independent given Y .

If X is fully removed from G, then we do indeed have S ⊥ Z | Y . This is left as an exercise in
algebraic manipulation of probability distributions.

(c) Is S ⊥ X | Y?

Solution: No. Consider the same example from above with binary random variables. Knowing
Y does not determine S , but knowing both X and Y does.

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

3 PGMs: Sleeping in Class
In this question, you’ll be reasoning about a Dynamic Bayesian Network (DBN), a form of a
Probabilistic Graphical Model.

Your favorite discussion section TA wants to know if their students are getting enough sleep. Each
day, the TA observes the students in their section, noting if they fall asleep in class or have red
eyes. The TA makes the following conclusions:

1. The prior probability of getting enough sleep, S , with no observations, is 0.7.

2. The probability of getting enough sleep on night t is 0.8 given that the student got enough
sleep the previous night, and 0.3 if not.

3. The probability of having red eyes R is 0.2 if the student got enough sleep, and 0.7 if not.

4. The probability of sleeping in class C is 0.1 if the student got enough sleep, and 0.3 if not.

(a) Formulate this information as a dynamic Bayesian network that the professor could use to
filter or predict from a sequence of observations. If you were to reformulate this network as
a hidden Markov model instead (that has only a single observation variable), how would you
do so? Give a high-level description (probability tables for the HMM formulation are not
necessary.)

Solution: Our Bayesian Network has three variables: S t, whether the student gets enough
sleep, Rt, whether they have red eyes in class, and Ct, whether the student sleeps in class.
Moreover, S t is a parent of S t+1, Rt, and Ct.

Let S t = 1 be the event that the student gets enough sleep on day t, and S t = 0 be otherwise.
Similarly, let Rt = 1 be the event that the student has red eyes on day t, and let Rt = 0 be
otherwise. Finally, let Ct = 1 be the event that the student sleeps in class on day t, and let
Ct = 0 be otherwise.

The network can be provided pictorally, or fully through conditional probability tables (CPTs.)
The CPTs for this problem are given by:

P(S 1 = 1) = 0.7
P(S t+1 = 1 | S t = 1) = 0.8
P(S t+1 = 1 | S t = 0) = 0.3

P(Rt = 1 | S t = 1) = 0.2
P(Rt = 1 | S t = 0) = 0.7
P(Ct = 1 | S t = 1) = 0.1
P(Ct = 1 | S t = 0) = 0.3

To reformulate this problem as an HMM with a single observation node, we can combine the
2-valued variables Rt and Ct into a single 4-valued variable et (e for evidence), multiplying
together the emission probabilities.

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

(b) Consider the following evidence values at timesteps 1, 2, and 3:

(a) e1 = (R1 = 0,C1 = 0) = not red eyes, not sleeping in class

(b) e2 = (R2 = 1,C2 = 0) = red eyes, not sleeping in class

(c) e3 = (R3 = 1,C3 = 1) = red eyes, sleeping in class

Find the likelihood of this sequence of observations. Assume a prior on P(S 1) that is consistent
with the prior in the previous part; that is, P(S 1 = 1) = 0.7.

Solution: We can apply the α-update algorithm. Define

αt(j) = P(S t = j, e1:t)

for t = 1, 2, 3. The α-update algorithm tells us that these are related via the following recursion

αt(j) = P(S t = j, e1, . . . , et)

=
∑

i

P(S t = j, S t−1 = i, e1, . . . , et−1, et)

=
∑

i

P(S t−1 = i, e1, . . . , et−1)P(S t = j | S t−1 = i)P(et | S t = j)

=
∑

i

αt−1(i)P(S t = j | S t−1 = i)P(et | S t = j)

and we use the following base case

α1(1) = P(S 1 = 1, e1)
= P(S 1 = 1)P(e1 | S 1 = 1)
= P(S 1 = 1)P(R1 = 0,C1 = 0 | S 1 = 1)
= P(S 1 = 1)P(R1 = 0 | S 1 = 1)P(C1 = 0 | S 1 = 1)

α1(0) = P(S 1 = 0, e1)
= P(S 1 = 0)P(e1 | S 1 = 0)
= P(S 1 = 0)P(R1 = 0,C1 = 0 | S 1 = 0)
= P(S 1 = 0)P(R1 = 0 | S 1 = 0)P(C1 = 0 | S 1 = 0)

Once we have computed each α3(j), we can compute the overall likelihood of the observations
by summing over them:

P(e1, e2, e3) =
∑

j

P(e1, e2, e3, S 3 = j) =
∑

j

α3(j)

The computations can get very tedious so we will use Python to step through the α-update
algorithm. Running it will give the final likelihood as P(e1, e2, e3) ≈ 0.01527.
Let pi be the prior probabilities of the two states

pi[0] = P(S_1 = 0) and pi[1] = P(S_1 = 1)

pi = [0.3, 0.7]

Let S store the transition probabilities

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

S[i][j] = P(S_{t+1} = j | S_t = i)

S = [[None, None] for _ in range(2)]

S[1][1] = 0.8

S[1][0] = 0.2

S[0][1] = 0.3

S[0][0] = 0.7

Let R store the emission probabilities for a student having red eyes

R[i][j] = P(R_t = j | S_t = i)

R = [[None, None] for _ in range(2)]

R[1][1] = 0.2

R[1][0] = 0.8

R[0][1] = 0.7

R[0][0] = 0.3

Let C store the emission probabilities for a student sleeping in class

C[i][j] = P(C_t = j | S_t = i)

C = [[None, None] for _ in range(2)]

C[1][1] = 0.1

C[1][0] = 0.9

C[0][1] = 0.3

C[0][0] = 0.7

Let the evidence e_t at time t be a tuple (R_t, C_t)

We store the evidence in the list below

evidence = [

(None, None), # dummy value for t = 0 so we can 1-index the list

(0, 0), # not red eyes, not sleeping in class

(1, 0), # red eyes, not sleeping in class

(1, 1) # red eyes, sleeping in class

]

Now we will run the forward/alpha-update algorithm for T iterations

T = 3

We will store the forward probabilities in the matrix alpha

alpha[t][i] = alpha_t(i) = P(S_t = i, R_1, ..., R_t, C_1, ..., C_t)

alpha = [[None, None] for _ in range(T + 1)]

Base case

alpha_1(i) = pi[i] * P(R_1 | S_1 = i) * P(C_1 | S_1 = i)

alpha_1(i) = pi[i] * R[i][evidence[1][0]] * C[i][evidence[1][1]]

alpha[1] = [pi[i] * R[i][evidence[1][0]] * C[i][evidence[1][1]] for i in range(2)]

print("alpha_1(0) =", alpha[1][0])

print("alpha_1(1) =", alpha[1][1])

Forward/alpha-update step

for t in range(2, T + 1):

alpha_t(j) = sum_{i} alpha_{t-1}(i) * P(S_t = j | S_{t-1} = i) * P(R_t | S_t = j) * P(C_t | S_t = j)

for j in [0, 1]:

alpha[t][j] = sum(alpha[t - 1][i] * S[i][j] * R[j][evidence[t][0]] * C[j][evidence[t][1]] for i in

↪→ [0, 1])
print("alpha_" + str(t) + "(0) =", alpha[t][0])

print("alpha_" + str(t) + "(1) =", alpha[t][1])

The final result is the sum of alpha_T(i) for all i

likelihood = sum(alpha[T])

print("P(R_1, ..., R_T, C_1, ..., C_T) =", likelihood)

(c) Consider the same evidence values at timesteps 1, 2, and 3 as the previous part:

(a) e1 = (R1 = 0,C1 = 0) = not red eyes, not sleeping in class

(b) e2 = (R2 = 1,C2 = 0) = red eyes, not sleeping in class

(c) e3 = (R3 = 1,C3 = 1) = red eyes, sleeping in class

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Find the most likely sequence of hidden states S t that produced the evidence above.

Solution: We will now apply the viterbi algorithm instead. Note that finding the most likely
sequence of hidden states from the sequence of observations is equivalent to the following
problem:

argmax
S 1:T

P(S 1:T | e1:T) = argmax
S 1:T

P(S 1:T , e1:T)

We can break apart this maximization into 2 different optimization problems:

max
S 1:T

P(S 1:T , e1:T) = max
S T

max
S 1:T−1

P(S 1:T , e1:T) = max
S T

vT (S T)

where vT (S T) is defined as

vT (S T) = max
S 1:T−1

P(S 1:T , e1:T)

We can interpret vt(S t) as the probability of seeing state S t, given the observations and assum-
ing that the HMM passed through the most probable sequence of states S 1 to S t−1.

Moreover,

vT (S T) = max
S 1:T−1

P(S 1:T , e1:T) = max
S 1:T−1

P(S 1:T−1, e1:T−1)P(S T | S T−1)P(eT | S T)

= max
S T−1

max
S 1:T−2

P(S 1:T−1, e1:T−1)P(S T | S T−1)P(eT | S T)

= max
S T−1

P(S T | S T−1)P(eT | S T) max
S 1:T−2

P(S 1:T−1, e1:T−1)

= max
S T−1

P(S T | S T−1)P(eT | S T)vT−1(S T−1)

This yields a recursive relation that can be turned into a dynamic programming algorithm. We
can also define the base case:

v1(S 1) = P(S 1, e1) = P(S 1)P(e1 | S 1)

Note that this is the same base case as the α-update algorithm! In fact, the only difference
between the α-update algorithm and the viterbi algorithm is that you can replace the sum with
a max. You can also see this similarity by comparing the code for the α-update algorithm
above with the code for the viterbi algorithm below.

Once the viterbi probabilities have been computed using the recursive relation above, we can
backtrack through them to find the most likely sequence of hidden states. For the sequence of
observations given in this problem, we get

• S 1 = 1: the student got enough sleep on day 1

• S 2 = 0: the student did not get enough sleep on day 2

• S 3 = 0: the student did not get enough sleep on day 3

Intuitively, this sequence of hidden states should make sense if you think about what the ob-
servations on each day are describing.

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Let pi be the prior probabilities of the two states

pi[0] = P(S_1 = 0) and pi[1] = P(S_1 = 1)

pi = [0.3, 0.7]

Let S store the transition probabilities

S[i][j] = P(S_{t+1} = j | S_t = i)

S = [[None, None] for _ in range(2)]

S[1][1] = 0.8

S[1][0] = 0.2

S[0][1] = 0.3

S[0][0] = 0.7

Let R store the emission probabilities for a student having red eyes

R[i][j] = P(R_t = j | S_t = i)

R = [[None, None] for _ in range(2)]

R[1][1] = 0.2

R[1][0] = 0.8

R[0][1] = 0.7

R[0][0] = 0.3

Let C store the emission probabilities for a student sleeping in class

C[i][j] = P(C_t = j | S_t = i)

C = [[None, None] for _ in range(2)]

C[1][1] = 0.1

C[1][0] = 0.9

C[0][1] = 0.3

C[0][0] = 0.7

Let the evidence e_t at time t be a tuple (R_t, C_t)

We store the evidence in the list below

evidence = [

(None, None), # dummy value for t = 0 so we can 1-index the list

(0, 0), # not red eyes, not sleeping in class

(1, 0), # red eyes, not sleeping in class

(1, 1) # red eyes, sleeping in class

]

Now we will run the viterbi algorithm for T iterations

T = 3

We will store the viterbi probabilities in the matrix v

v[t][i] = v_t(i) = P(S_t = i, R_1, ..., R_t, C_1, ..., C_t)

v = [[None, None] for _ in range(T + 1)]

We will also store a sequence of backpointers in the matrix bp

bp = [[None, None] for _ in range(T + 1)]

Base case

v_1(i) = pi[i] * P(R_1 | S_1 = i) * P(C_1 | S_1 = i)

v_1(i) = pi[i] * R[i][evidence[1][0]] * C[i][evidence[1][1]]

v[1] = [pi[i] * R[i][evidence[1][0]] * C[i][evidence[1][1]] for i in range(2)]

print("v_1(0) =", v[1][0])

print("v_1(1) =", v[1][1])

The base case for the backpointer matrix is trivial

bp[1] = [0, 0]

Viterbi step

for t in range(2, T + 1):

v_t(j) = max_{i} v_{t-1}(i) * P(S_t = j | S_{t-1} = i) * P(R_t | S_t = j) * P(C_t | S_t = j)

bp_t(i) = argmax_{i} v_{t-1}(i) * P(S_t = j | S_{t-1} = i) * P(R_t | S_t = j) * P(C_t | S_t = j)

for j in [0, 1]:

v[t][j] = max(v[t - 1][i] * S[i][j] * R[j][evidence[t][0]] * C[j][evidence[t][1]] for i in [0, 1])

bp[t][j] = max([0, 1], key=lambda i: v[t - 1][i] * S[i][j] * R[j][evidence[t][0]] * C[j][evidence[t

↪→][1]])
print("v_" + str(t) + "(0) =", v[t][0])

print("v_" + str(t) + "(1) =", v[t][1])

The final result is the max of v_T(i) for all i

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

likelihood = max(v[T])

print("P(S_1, ..., S_T, R_1, ..., R_T, C_1, ..., CT) =", likelihood)

Now we will backtrack to find the most likely sequence of states

Let the most likely sequence of states be stored in the list path

path = [None for _ in range(T + 1)]

path[T] = max([0, 1], key=lambda i: v[T][i])

print("S_" + str(T) + " =", path[T])

for t in range(T - 1, 0, -1):

path[t] = bp[t + 1][path[t + 1]]

print("S_" + str(t) + " =", path[t])

The most likely sequence of states is the list path

print("Most likely sequence of states:", path[1:])

DIS9,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

	Concerns about Randomness
	Probabilistic Graphical Models
	PGMs: Sleeping in Class

