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| Multiple Choice (Single Answer)

1. (1 point) Suppose X, X», ..., X, are drawn i.i.d. from the distribution py(x) o % exp(—|x — 6)).
What is the maximum likelihood estimate of 6?

X.
A YL

X.
B. YL 4

C. The median of X;, X5, ..., X,,.
D. The mode of X, X5, ..., X,,.
2. (1 point) How does masked self-attention work for transformer decoder models? IL.e., ignoring
any dropout, when computing self-attention weights for the token at time step ¢,
A. All weights are set equal to zero independently at random with some probability.
B. Weights corresponding to time steps greater than ¢ are set equal to zero.
C. Weights corresponding to time steps less than ¢ are set equal to zero.
D. Every k-th weight is set to zero, where k is a hyperparameter.

3. (1 point) Consider the graphical model below. Which of the following is a joint factorization
of the distribution of random variables.

A. p(A,B,C) p(BC, D) p(E)

B. p(A)p(B | A,C)p(C | A)p(D | B,C,E) p(E)
C. p(A)pB | A)p(C | A,B)p(D | B,C,E) p(E)
D. p(A| B,C)p(B | C,D)p(C | D) p(D) p(E | D)
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4. (1 point) Suppose that we have a transformer model, and we replace the multi-headed atten-
tion mechanism with a single-head attention mechanism (i.e. 1 head). What will be the effect
on the model?

A. The transformer will no longer be able to learn long-range dependencies.
B. The transformer will have difficulty attending to multiple inputs.

C. The transformer will not be able to determine the relative word positions in the
sequential data.

D. The transformer will perform computation slower because it has fewer attention
heads.

5. (1 point) Let x be a random vector of flattened RGB images (e.g., x € R?*283) Suppose p(x)
is a Multivariate Gaussian distribution. If we apply n successive convolutions to the image
(only convolutions and no activation functions, pooling or feed-forward layers), i.e. z = f(x),
where f(-) is a function that applies n consecutive convolutions, will p(z) be a Multivariate
Gaussian distribution?

A. Yes
B. No
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2 Multiple Choice (Multiple Answer)

Fill in either true or false for all statements: there may be more than one true option, but there is
always at least one true option. Each question is worth two points, and each statement is worth 0.5
points. Marking the incorrect option will result in a penalty of -0.5 points, whereas not choosing
an option does not have a penalty. Your score for each question will be ReLU(points).

1. (2 points) Which of the following statements are true about maximum a posteriori (MAP)
estimation? Mark true or false for the statements below.

OTQF:

OTOF:

OTOF:
OTQOF:

In MAP estimation, we have a probability distribution on the parameters of
the model.

MLE is a special case of MAP where the prior on each parameter is a
Bernoulli distribution.

The MAP estimate is equivalent to maximum likelihood estimate.

MAP provides a point estimate but does not provide uncertainty estimation.

2. (2 points) What would be an advantage of using lasso regression as compared to using ridge
regression? Mark true or false for the statements below.

OTQOF:

OTOEF:

OTQF:
OTOEF:

Lasso regression has a closed-form solution and therefore is less costly
computationally.

Lasso regression is more effective at reducing overfitting than ridge regres-
sion.

Lasso regression can be used to select out important features.

Lasso regression avoids inverting singular matrices, whereas ridge regres-
sion doesn’t.

3. (2 points) Which of the following statements is true about the bias-variance decomposition?
Mark true or false for the statements below.

OTQOF:

OTOEF:

OTQF:

OTQEF:

Compared to ordinary least squares (OLS), ridge regression generally has
higher bias and lower variance.

Compared to one single decision tree, random forests with decision trees of
the same depth generally have higher variance.

For a soft-margin SVM, decreasing the regularization strength generally
leads to lower bias.

Applying an RBF kernel in kernelized SVM can lead to reductions in model
bias on some data sets as compared to a linear kernel.

4. (2 points) River has some high-dimensional data from a genetic sequencing experiment, but
he’s not sure whether to use PCA or tSNE for dimensionality reduction. Help him by selecting
all the true statements here. Mark true or false for the statements below.
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OTOF:

OTOF:

OTOF:

OTOF:

If River wants deterministic dimensionality reduction results, tSNE is a
better choice.

If River is confident that the underlying structure of his data is non-linear,
tSNE is probably a better choice.

If River wants to ensure that local structures are preserved (neighboring
points in the original data sets are still close to each other in the new repre-
sentation), tSNE is a better choice.

If River wants to use the reduced features in a linear regression model,
tSNE is probably a better choice.

5. (2 points) Which of the following finds the first principal component, w, of a n X d data ma-

trix, X = [ X
OTQEF:

OTQOF:
OTQF:
OTQF:

T
X, ] ?
2
X'w
n
maXy Zi:l X,' - WW
. X'w
n
miny Zi:l X,' - ”’T”WH

max w W' X'Xw
s Iwll=1

min w w'X'Xw
s.t.|lwll=1

6. (2 points) Which of the following statements is true regarding regularized linear regression?
Mark true or false for the statements below.

OTQF:

OTQF:

OTOEF:

OTQOF:

In the Bayesian MAP interpretation, Ridge regression can be interpreted as
linear regression for which the coefficients have a Laplace prior.

In the Bayesian MAP interpretation, Ridge regression can be interpreted as
linear regression for which the coefficients have a Gaussian prior.

In the Bayesian MAP interpretation, Lasso regression can be interpreted as
linear regression for which the coefficients have a Laplace prior.

In Ridge regression, the regularization parameter, A, can be fit with MLE
on the training set.

7. (2 points) Which of the following statements are true regarding do-interventions? Mark true
or false for the statements below.

OTQF:
OTQEF:
OTQEF:

OTQEF:

X and Y are confounded if p(Y =y | do(X =x))=p(Y =y | X =x)
X and Y are confounded if p(Y =y | do X =x) #p(Y =y | X =x)

p(Y =y | do(X = x)) can never be estimated from observational data if
there is a confounding variable, Z.

The adjustment formula provides a way to compute p(¥Y =y | do(X = x))
using standard conditional and marginal probability distributions.

8. (2 points) Which of the following statements are true regarding random forests? Mark true or
false for the statements below.
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OTOF:
OTOF:
OTOF:
OTOF:

Random forests fit decision trees to bootstrapped samples of the data.
Random forests are trained with Stochastic Gradient Descent (SGD).
Random forests are an example of ensemble methods.

Random forests can only be used for regression and not classification.

9. (2 points) Recall that the objective function for Soft-margin SVMs is:

1, -
min—=||w||- + C ;
min 1w 21 &

S.t. Vi (WTXI' - b) >1- f,‘ Vi
&>0 Vi

Which of the following statements are true regarding SVMs? Mark true or false for the state-

ments below.

OTOF:

OTOF:
OTOF:

OTOF:

The objective function above can be rewritten in terms of a squared error
loss and a ridge penalty.

Hard-margin SVM is a special case of Soft-margin SVM that sets C to 0.

SVM and Neural networks are usually trained using the same optimization
technique.

The corresponding kernelized variant can be derived by analyzing the dual
optimization problem.

10. (2 points) Which of the following statements are true regarding Multiway Classification (i.e.
classification with more than two classes to choose from) with neural networks? Mark true
or false for the statements below.

OTQF: Multiway classification often uses the softmax activation function for com-
puting the predicted probability for each class.

OTQF: Inmultiway classification, a class C; is predicted only if the predicted prob-
ability for the class is greater than 50%.

OTQOF: The cross entropy loss function derived for multiway classification can be
interpreted through the lens of maximum likelihood.

OTQOF: Multiway classification is handled by performing a series of binary classi-
fications.

11. (2 points) Suppose we have a 2N-dimensional vector x with elements, x;, i € {1,2,...,2N}.

All of the odd indices are i.i.d gaussian with mean 0 and variance o>. The even indices are
defined as: x; = x?_l for even j. Let X be the covariance matrix of X. Mark true or false for the

statements below.

Hint: Recall that the the third moment of an MVG is 0 (i.e. E[x’] = 0 for any mean 0
Gaussian random variable, x)
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OTQOF: Z; is non-zero.
OTQF: ZXisadiagonal matrix.
OTQOF: XisPSD.

OTQOF: xisamultivariate gaussian random vector.
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3 Stochastic gradient descent

1. (7 points) In this problem, we will walk through a simple example for stochastic gradient
descent. Consider the quadratic loss function

" 1 ¢ 11 )
Lo, i) =~ Zl L(w.y) = ~ Z} S0 =3) (1)
where yy, - -+ ,y, are given scalars and w € R is a single parameter that we wish to estimate.

In order to estimate the optimal w* that minimizes our loss function we will use stochastic
gradient descent (SGD).

Typically, when using SGD, we randomly sample a data point y; from the set of all data points
{vi}’_, and compute the gradient update step on the sampled y;. Rather than sampling with re-
placement, we consider a variant of SGD where we sample without replacement. Specifically,
we will shuffle our dataset and then run SGD where we use y; as the sample for the time step
t =1, y, as the sample for the time step ¢ = 2 and so on. For this question you may assume we
have a already shuffled dataset y,-- -, y,.

(a) (2 points) What is the stochastic gradient update step for w at time # under the optimiza-
tion objective to minimize L(w)? Assume the step size is . Write down an expression for
w1 using n, w'” and y,. Remember that stochastic gradient descent only considers one
data point in each update step.

(b) (3 points) Now suppose we use the dynamic step size n = % that changes according to 7.
Write the expression for w® after ¢ steps of SGD. Assume we start with w’ = 0. Your
expression for w® should only include y;,---,y, and z. You may use scratch paper if
needed, but ensure that your final answer is in the space provided below on this page.

(c) (2 points) Instead of SGD, we can also determine a closed form solution to our optimiza-
tion problem
w* = argmin L(w)
w
What is this closed form solution? You are not required to show the derivation, though
you may choose to in order to receive partial credit if your final answer is incorrect.

Is the closed form solution the same as the result of running SGD for n steps (one epoch
on the dataset)? If not, how does it differ?
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4 Baking bread on rainy days

1. (10 points) Connor bakes bread every day and experiments with different variables x in bread
baking such as the amount of water, the time for rising the dough, and the oven temperature.
After baking each bread, Connor measures the quality of the bread and summarizes the bread
quality as a variable y. Assuming a linear relationship between the bread quality y and the
bread baking variables x, Connor now wants to build a linear regression model for the bread
quality.

In addition to the controlled variables x € RY, the bread quality is also influenced by an
unobserved random variable € € R that adds “noise” to the linear relationship. For each of the
n observations {x;, y;}?_,,

yi:xiT,B+ei, i=1,---,n. )

Note that all observations are independent from one another.

Typically, we assume that each error variable ¢; is drawn from a Gaussian distribution

& ~ N, 7). (3)

However, Connor notices that the bread quality is less consistent on rainy days than on sunny
days. In other words, the variance o7 of the error variable € is twice as large on rainy days
than on sunny days.
Connor has collected bread data on 2m days, where the first m examples {x;, y;}!" | were col-
lected on sunny days and have noise variance 0%, and the second m examples {x;, y;}7" ., were
collected on rainy days have noise variance 20>. He does not know the noise variance o.

(a) (2 points) What is the log-likelihood function for the regression coefficient 8 and the

sunny day noise variance o->? That is, derive an expression for

5(&30-2) = lOgP()’l,yz,"' » Yom |ﬁ,0-2)

in terms of 3, 0%, m and the observations {x;, y;}>",.
Your may use C in your answer to represent a constant that does not depend on 3, 0% or
{xi yl'},-zfl-

(b) (2 points) Next we will work towards finding the maximum likelihood estimate (MLE)
of the linear regression model parameters. To simplify the calculations, we want to use
the vector and matrix notation instead of the summation notation. Let X € R*™? be the
feature matrix and y € R*>" be the bread quality vector. For example, the loss for ordinary
least squares regression (not applied here) could be written as ||y - X,8||2.

Let A denote the 2m by 2m diagonal matrix

I, O
A=[5

Derive an expression €(5, o?) in the vector and matrix notation in terms of m, B, o X, v,
and A.

Hint: To sanity check your solution, noisier examples on the rainy days ought to be
weighed less in the regression.
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(c) (3 points) What is the maximum likelihood estimate (MLE) of the linear regression model
parameters 7

Please use the vector and matrix notation in writing your answer. Derive an expression of
Bure in terms of m, X, y, and A.
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(d) (3 points) What is the maximum likelihood estimate (MLE) of the sunny day noise vari-
ance 02? Derive an expression of é'ﬁ,l g 1n terms of ﬁMLE, m, X,y, and A.
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3 Multi—query attention

1. (8 points) Multi-head attention layers, as used in the Transformer neural sequence model, are
powerful for moving information across and between sequences. While training these layers is
generally fast and simple, due to parallelizability across the length of the sequence, incremental
inference at test time for Transformer decoders (where such parallelization is impossible) is
often slow, due to the memory-bandwidth cost of repeatedly loading the large “keys” and
“values” tensors. In this problem, we will look into the memory usage of multi-head attention.

(a) (1 point) In the multi-head scaled dot-product attention, recall that there are multiple
attention “heads”. Each head takes as input a query matrix Q € R™%_ a key matrix
K € RS and a value matrix V € R*%, § and T may differ in general, for example in
cross-attention where 7' is the target sequence length and S is the source sequence length.
d; and d, can also differ in general. However, in this problem, for simplicity, assume
S =T = L (sequence length) and d; = d, = d), (head dimension). The attention weights
in each head are:

Attenti 1ghts(Q, K) ft [QKT]
ention weights(Q, K) = softmax ,
Vi

and the attention output from each head is:

T
Attention(Q, K, V) = Attention weights(Q,K) V = softmax(QK ) V.
Vi
What is the dimension of the attention weight matrix Attention weights(Q, K) and the
attention output matrix Attention(Q, K, V') for each head?

(b) (2 points) What is the total size of memory needed when computing Attention(Q, K, V)
for each head? Write your answer using big-O notation O(-) in terms of L and d,.

(c) (1 point) In the multi-head self-attention layers in Transformer, the query Q € RP key
K € RY4 and value V € R4 matrices for each attention head are linearly projected
from the same embedding matrix X of dimension L X e, where e is the embedding di-
mension. Note that each attention head is associated with three projection matrices: one
projection matrix from the embeddings to the attention query, one to the attention key,
and one to the attention value.

What is the dimension of each of these three linear projection matrices (for one head)?
Write your answer in terms of L, d,, and e.

(d) (2 points) What is the total size of memory needed when computing the linear projections
and the attention operations for H heads? Include the memory required for storing the
projection weights and the intermediate query, key, and value matrices.

Typically in Transformer models the embedding dimension e = 2721 d, = Hd, is equal
to the sum of head dimensions across all attention heads. You may use this assumption
to simplify your answer. You are not required to write down the generic formula without
the simplifying assumption, though you may choose to in order to receive partial credit if
your final answer is incorrect.

Use the big-O notation O(-) in terms of the embedding dimension e, the sequence length
L, and the number of heads H.
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(e) (1 point) For long sequence length (L >> ¢), what is the majority of the memory con-
sumption used for?

(f) (1 point) For models with “wide” embedding dimension on short sequence length (e >>
L), what is the majority of the memory consumption used for?
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6 Ocean wave patterns

1. (10 points) Stella watches ocean waves every day and notices a daily periodic pattern. She is
curious to study the sea surface elevation as a function of the time of the day. Stella uniformly
sampled n observation times xi,--- , x, during the day. For simplicity, we will denote the
time of the day to be a value in the range of [—n, ], with —r representing midnight and
representing the midnight of the next day. In other words, the x values of the data points are
randomly sampled from the uniform distribution on the domain [—m, ].

After collecting the sea surface elevation data at these randomly sampled time points, Stella
wishes to estimate the sea surface elevation at noon (corresponding to x = 0), and decides
to apply k-nearest neighbors (kNN) regression. Stella’s version of kNN regression takes the
unweighted average of the k nearest neighbors.

Even though Stella doesn’t know this, the true sea surface elevation level at time x is cos(x).
Stella is able to measure the sea surface level perfectly, so there is no noise in her measure-
ments.

(midnight) {m*m) (6pm)
1

-

=T i -~
- \

. 2 -1 »

Figure 1: The true sea surfacel elevation level function f(x) = cos(x) during the interval [—m, 7].

(a) (2 points) Among the n observation times xi, - - - , x,, € [, xr] that Stella uniformly ran-
domly sampled, what is the probability that at least one point will be within the interval
_zz
3031

(b) (2 points) With £k = 1 (1NN regression), let f (x) be the INN estimate of the sea level at
time x € [—m, ]. Note that f (x) depends on the observations that Stella sampled.

What is the probability that Stella’s estimate f(x = 0) for the noon sea level will be greater
than or equal to %? Your answer should depend on n.
Hint: cos(n/3) = 1.

(c) (2 points) Still with £ = 1 (1NN regression), what is the probability that Stella’s estimate
f (x = 0) for the noon sea level will be within § to the true sea level at noon? Recall that
the true sea level is 1 at noon according to the function f = cos(x). Here, 6 € (0,1) is a

given constant.

Your answer should depend on » and ¢, and you may use the arccos function. Recall that
the arccos function is the inverse of the cosine function. For example, arccos(1) = 0,
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arccos(0) = n/2, and arccos(—1) = n. Recall that the arccos function has [—1, 1] as its
domain and [0, ] as its output range.

(d) (1 point) What happens to the above probabiAlity when n — oo? (The above probability
refers to the probability that Stella’s estimate f(x = 0) for the noon sea level will be within
0 to the true sea level at noon.)
A. The probability goesto 1 — ¢ as n — co.
B. The probability goes to 1/2 as n — 0.
C. The probability goes to 1 as n — 0.
D. The probability goes to d as n — oo.

(e) (2 points) Now consider kNN regression with k > 1. What is the probability that at least

k of the n observation points will be within the interval [—%, % ?
Write your answer as a function of n and k, and you may use binomial terms in the form

of (Z) in your answers and summation over such binomial terms.
(f) (1 point) Which of the following statements is true about estimating the noon time sea
level (x = 0) and estimating the 6pm sea level (x = 7))? There is only one correct choice.

A. Stella’s estimate for the noon time sea level with k = 3 is always at least as
accurate as her estimate with k = 1.

B. Stella’s estimate for the noon time sea level with k = 1 is always at least as
accurate as her estimate with k = 3.

C. Stella’s estimate for the 6pm sea level with k = 3 is always at least as accurate
as her estimate with k = 1.

D. Stella’s estimate for the 6pm sea level with k = 1 is always at least as accurate
as her estimate with k = 3.
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7 Residual connections

1. (11 points) Residual connections are a very important innovation in the practice of deep learn-
ing because they allow more effective training of very deep neural networks. In the previous
homework assignments, we have seen that residual connections are useful in Transformer
models. In this problem, we will examine why residual connections help with training deep
networks. Throughout this problem, we will be working with fully-connected neural net-
works.

Recall that in a fully-connected neural network of depth k, we have k fully-connected hidden
layers. In the t-th layer (t = 1,--- ,k), the input s, € R? to the ¢-th layer is the output of the
previous layer, and the output s,,; € R? from the ¢-th layer will be the input to the next layer.
Assume for simplicity that all hidden layers have the same output dimensionality d, and this is
equal to the input dimensionality. First, a linear transformation W, is applied to the activation
s;, and then an activation function A is applied on the input s,. Mathematically,

Sit1 = A(W;s)) “)

where W, € R® is the weight matrix for the #-th layer. Assume all the hidden dimensions are
the same d. The initial input to the first layer s' is the input x to the neural network. At the
end of the k hidden layers, there is a linear output projection such that the output of the neural
network is y = W, 8;+1. Overall, the output y is a function of x and all the weight matrices W,
fort=1,--- ,k+ 1.

For simplicity throughout this question, we will assume that the activation function is the
identity (A(s) := s), but the intuition from this exercise also applies more generally.

(a) (1 point) What is the gradient of s,,; with respect to s,? In other words, what is Vs,.;?
Note that this gradient will be a matrix of dimension d X d, since both s, and s,,; are
d-dimensional vectors.

(b) (1 point) Now let’s consider a loss function L(x,y). During backpropagation, if we al-
ready calculated the gradient VL (this is a d-dimensional vector), what is the gradient
V,,L? Write down an expression for Vg L using W, and Vg L.

St+1

(c) (2 points) As described above, let £+ 1 be the index of the final output layer in the neural
network after k hidden layers, and suppose we have the vector VL (the gradient of the
loss with respect to the final (k+ 1)-th layer input). Forany # = 1,.. ., k, write the gradient
Vs, L. Your answer may only contain the derivative term V,_, L, all other derivatives need
to be explicitly written. Hint: You can use the product notation || for matrix product to
help you simplify your answer.

(d) (3 points) Suppose we have a symmetric matrix W € R whose largest eigenvalue

A1 (W) satisfies |/11(W)| < 1, and let x € R? be a d-dimensional vector.

Now consider taking the m-th power of the matrix for some integer m > 1. Derive an
upper bound for the norm ||[W”x||, in terms of m, ||x||,, and the largest eigenvalue A;(W).
As m becomes large, what happens to the norm of the m-th power of the matrix multiplied

by the vector, ||W"x||,?
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(e) (2 points) Suppose that for all 7z, W, is symmetric and such that the largest eigenvalue

|/11(W,)| < 1. Forany r = 1,--- ,k, what is an upper bound for VL in terms of the norm
of the gradient at the last layer ||V5k+1 L|| , and the largest eigenvalues of each weight matrix
4 (W)?

(f) (1 point) From the previous parts of this problem, you should have observed a potentially
problematic situation that can arise when training deep neural networks. What is the
problem?

(g) (1 point) Residual connections seeks to address this problem. Residual connections add
the untransformed input into the output of the layer. Explicitly:

Sie1 = A(W;s)) +s;. )

Similar to part (a), compute Vs, for a residual network. What are the implications for
the previously problematic issue with training very deep neural networks?
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8 Theory of neural network generalization (CSQ89A only)

1. (8 points) Many empirical phenomena, well-known to deep learning practitioners, remain
mysteries to theoreticians. One such mystery has been the question of generalization: why
do the functions learned by neural networks generalize so well to unseen data? From the
perspective of classical bias-variance trade-off in machine learning, the generalization perfor-
mance of neural networks is a surprise given that they are so overparameterized that they could
easily represent countless poorly-generalizing functions.

In this problem, we will explore the following problem: given a network architecture, a target
function f, and a training set of n random examples, can we efficiently predict the generaliza-
tion performance of the network’s learned function f? This would help explain why neural
networks generalize well on certain functions.

(a) (2 points) Consider a feedforward neural network representing a function fg X - R,
where 6 is a d-dimensional parameter vector. Further consider one training example x
with target value y and one test point x". Suppose we perform one step of gradient descent
with a small learning rate n with respect to the MSE loss

€0) = (fo(x) — y)*.

What is the parameter update on 6 from this one step of gradient descent?

You can write the update rule in the form of 8 « 6+ and give an expression of ¢ in terms
of the learning rate 7, f, at the previous parameter 6, and the training example (x,y). You
may need the gradient V,fy(x) in your expression.

(b) (2 points) Now let’s look at how this parameter update changes the output f(x’) on the
test example x’. As an approximation, we linearize fj,s about 8 with Taylor expansion:

Joss) = Jo&) + Vafox') - 6+ 0.
This will give us an approximation in the form of

Fors(x) = fo(xX') = =2n(fo(x) = K (x, X') + O(S?).

This kernel approximation approximates how the training data point (x,y) changes the
prediction for the test data point x” through the kernel K(x, x’).

What is the kernel K(x, x")? Note that K(x, x") is a scalar that measures the “similarity”
between x and x’.

Hint: The expression for K(x, x') will depend on V,f,.

(¢) (1 point) In the special case where the network is only one linear layer (f3(x) = x76),
what is the kernel K(x, x")?

(d) (3 points) Inderiving the generalization of kernel regression, we get a lot of mileage from
a simple trick: we look at the learning problem in the eigenbasis of the kernel. Viewed
as a linear operator, the kernel has eigenvalue and eigenfunction pairs (4;, ¢;) defined by
the condition that for all x € X (recall that X is the input domain of the neural network
function f),
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f K(x, X )pi(x)dx" = Aipi(x).

xeX
The eigenvalue and eigenfunction definitions here are the generalization of the finite-
dimensional definitions of eigenvalue and vector.
Suppose the input space is the one-dimensional interval X = [-1, 1]. Consider the poly-
nomial kernel K(x, x’) = xx’ + x*x’2. (This polynomial kernel arises from featurizing x as
[x, 2°].)
Show that ¢;(x) = x and ¢,(x) = x? are the eigenfunctions for this kernel. What are the
eigenvalues 1, and A, for these two eigenfunctions?
Recent theoretical work tells us that higher-eigenvalue eigenfunctions are easier to learn.
Comment on the implications of this result in light of the eigenvalues you computed.
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