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minutes or 360 minutes, respectively.)

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets. If you run out of space for
an answer, write a note that your answer is continued on the back of the page.

• The total number of points is 150. There are 18 multiple choice questions worth 4 points each, and 5 written questions
worth a total of 78 points.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.
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Q1. [72 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [4 pts] Which of the following are typical benefits that might motivate you to preprocess data with principal components
analysis (PCA) before training a classifier?

⃝ A: PCA tends to reduce the bias of your classifi-
cation algorithm.

⃝ B: PCA can be used to avoid overfitting.

⃝ C: PCA tends to reduce the variance of your clas-
sification algorithm.

⃝ D: PCA can be used to avoid underfitting.

(b) [4 pts] Select the true statements about principal components analysis (PCA).

⃝ A: PCA is a clustering algorithm.

⃝ B: PCA produces features (principal coordinates)
that are linear combinations of the input features.

⃝ C: The principal components are chosen to maxi-
mize the variance in the projected data.

⃝ D: The principal coordinates are the eigenvalues
of the sample covariance matrix.

(c) [4 pts] In each plot below, the data is projected onto two (unit-length) principal component vectors. We say that a plot is
“valid” if the x-coordinate (written as “PC1”) would be the first chosen principal coordinate and the y-coordinate (written
as “PC2”) would be the second chosen principal coordinate. Which plots are valid?

⃝ A:

⃝ B:

⃝ C:

⃝ D:

(d) [4 pts] Which of the following are typical benefits of ensemble learning in its basic form (that is, not AdaBoost and not
with randomized decision boundaries), with all weak learners having the same learning algorithm and an equal vote?

⃝ A: Ensemble learning tends to reduce the bias of
your classification algorithm.

⃝ B: Ensemble learning tends to reduce the variance
of your classification algorithm.

⃝ C: Ensemble learning can be used to avoid overfit-
ting.

⃝ D: Ensemble learning can be used to avoid under-
fitting.
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(e) [4 pts] Recall that in certain cases, Newton’s method can converge to the global optimum of an objective function in just
one step. For which of the following objective functions and methods will Newton’s method always converge in just one
step? (Assume λ > 0 where regularization is used.)

⃝ A: Dualized, kernelized logistic regression where
the cost function is the mean of the logistic losses

⃝ B: Ridge regression with an ℓ2-regularized mean
squared error

⃝ C: A neural network with ReLU activation func-
tions on the hidden units and an ℓ2-regularized mean
squared error

⃝ D: Dualized, kernelized ridge regression with an
ℓ2-regularized mean squared error

(f) [4 pts] We are fitting a linear function to data in which some features are known to be much noisier than others. We
account for this by applying an asymmetric penalty in ridge regression: in the normal equations, we replace the identity
matrix with a different diagonal matrix. Each entry on the diagonal is a hyperparameter. Although there are many
hyperparameters, suppose that we magically find the best hyperparameter values for our validation set. How is the result
likely to differ from the result of standard ridge regression?

⃝ A: Lower validation error.

⃝ B: It is equivalent to placing an anisotropic Gaus-
sian prior probability on the regression weights, then
finding the weights that maximize the likelihood.

⃝ C: The number of weights equal to zero tends to
be greater.

⃝ D: The difference is usually small, as the hyperpa-
rameters will tend to have almost the same value.

(g) [4 pts] We are given n training points having d features each. Select the true statements about applying a k-nearest
neighbor algorithm to a test point.

⃝ A: It is possible to implement the algorithm to use
the ℓ1 metric as your distance function.

⃝ B: The k-d tree k-nearest neighbor algorithm is
fast because it computes the distance between the test
point and a training point for only k training points.

⃝ C: There is a k-nearest neighbor algorithm that
classifies a test point in at most O(nd + n log k) time,
even if k is much larger than d.

⃝ D: The k-nearest neighbor algorithm can be used
for classification, but not regression.

(h) [4 pts] Select the true statements about the singular value decomposition (SVD) and the eigendecomposition.

⃝ A: The SVD applies only to square matrices.

⃝ B: The eigendecomposition applies only to square
matrices.

⃝ C: The right singular vectors of a matrix X ∈ Rn×d

are eigenvectors of X⊤X.

⃝ D: Consider a non-square matrix X ∈ Rn×d and
the vector w ∈ Rd \ {0} that maximizes the Rayleigh
quotient (w⊤X⊤Xw)/(w⊤w). The singular values of X
are no greater than the (positive) square root of the
maximum Rayleigh quotient.

(i) [4 pts] Select the true statements about AdaBoost for two-class classification.

⃝ A: We can train all T weak learners simultaneously
in parallel.

⃝ B: After a weak learner is trained, the weights as-
sociated with the training points it misclassifies are
increased.

⃝ C: The coefficient βT assigned to weak learner GT

is 0 if the weighted error rate errT of GT is 1.

⃝ D: AdaBoost makes no progress if it trains a weak
learner only to discover that its weighted error rate is
substantially greater than 0.5.

3



(j) [4 pts] Which of the following are valid kernel functions? A kernel function k(x, z) is valid when there exists some
function Φ : Rd → S where S is a space (possibly finite, possibly infinite) that has inner products such that we can write
k(x, z) = Φ(x)⊤Φ(z).

⃝ A: k(x, z) = exp
(
−
∥x − z∥2

2σ2

)

⃝ B: k(x, z) = ∥x∥ ∥z∥

⃝ C: k(x, z) = x⊤
[
727 1
1 42

]
z

⃝ D: k(x, z) = x⊤
[
−727 1

1 −42

]
z

(k) [4 pts] You are training a neural network with sigmoid activation functions. You discover that you are suffering from the
vanishing gradient problem: with most of the training points, most of the components of the gradients are close to zero.
It is causing training to be very slow. How could you combat this problem?

⃝ A: Make the network deeper (more layers).

⃝ B: Make the network shallower (fewer layers).

⃝ C: Initialize the weights with larger values.

⃝ D: Use ReLU activations instead of sigmoids.

(l) [4 pts] Select the true statements about convolutional neural networks.

⃝ A: Pooling layers (of edges) reduce the number of
hidden units in the subsequent layer (of units).

⃝ B: For a convolutional layer, increasing the num-
ber of filters decreases the the number of hidden units
in the subsequent layer.

⃝ C: Each unit in a convolutional layer is connected
to all units in the previous layer.

⃝ D: For a convolutional layer, increasing the filter
height and width decreases the the number of hidden
units in the subsequent layer. (Assume no padding.)

(m) [4 pts] Recall that k-means clustering (Lloyd’s algorithm) takes n sample points X1, X2, . . . , Xn and seeks to find a vector

y of cluster assignments that minimizes
k∑

i=1

∑
y j=i

∥∥∥X j − µi

∥∥∥2
, where y j ∈ {1, 2, . . . , k} and the cluster center µi =

1
ni

∑
y j=i

X j is

the average of the sample points assigned to cluster i. Select the true statements.

⃝ A: k-means is guaranteed to find clusters that min-
imize its cost function, as the steps updating the clus-
ter assignments y j can be solved optimally, and so can
the steps updating the cluster means µis.

⃝ B: In the algorithm’s output, any two clusters are
separated by a linear decision boundary.

⃝ C: It is not possible to kernelize the k-means algo-
rithm, because the means µi are not accounted for in
the kernel matrix.

⃝ D: Statisticians justify k-means optimization by
assuming a Gaussian prior on the means and applying
maximum likelihood estimation.

(n) [4 pts] Select the true statements about the running time of k-means clustering of n sample points with d features each.

⃝ A: The step that updates the cluster means µi, given
fixed cluster assignments y j, can be implemented to
run in at most O(nd) time.

⃝ B: Increasing k always increases the running time.

⃝ C: The step that updates the cluster assignments
y j, given fixed cluster means µi, can be implemented
to run in at most O(nkd) time.

⃝ D: The k-means algorithm runs in at most O(nkd)
time.

4



(o) [4 pts] Which of the following techniques tend to increase the likelihood that the decision trees in your random forest
differ from one another?

⃝ A: Using shorter decision trees

⃝ B: Using deeper decision trees

⃝ C: Considering only a subset of the features for
splitting at a treenode

⃝ D: Bagging

(p) [4 pts] Select the true statements about the bias-variance tradeoff in random forests.

⃝ A: Decreasing the number of randomly selected
features we consider for splitting at each treenode
tends to increase the bias.

⃝ B: Increasing the number of decision trees tends
to increase the variance.

⃝ C: Decreasing the number of randomly selected
features we consider for splitting at each treenode
tends to decrease the bias.

⃝ D: Increasing the number of decision trees tends
to decrease the variance.

(q) [4 pts] Select the true statements about decision trees.

⃝ A: The information gain is always strictly positive
at each split in the tree.

⃝ B: Pruning is a technique used to reduce tree depth
by removing nodes that don’t reduce entropy enough.

⃝ C: Decision trees with all their leaves pure are
prone to overfitting.

⃝ D: Calculating the best split among quantitative
features for a treenode can be implemented so it takes
asymptotically the same amount of time as calculat-
ing the best split among binary features.

(r) [4 pts] Select the true statements about awards given for research related to this course.

⃝ A: A Nobel Prize in Physiology was awarded for
characterizing action potentials in squid axons.

⃝ B: A Nobel Prize in Physiology was awarded for
discoveries about how neurons in the visual cortex
process images.

⃝ C: A Turing Award was awarded for work on deep
neural networks.

⃝ D: A Gödel Prize was awarded for the paper on
AdaBoost.
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Q2. [16 pts] Performing PCA by Hand
Let’s do principal components analysis (PCA)! Consider this sample of six points Xi ∈ R

2.{[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
2

]
,

[
2
1

]
,

[
2
2

]}
.

(a) [3 pts] Compute the mean of the sample points and write the centered design matrix Ẋ.

(b) [6 pts] Find all the principal components of this sample. Write them as unit vectors.
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(c) [4 pts]

• Which of those two principal components would be preferred if you use only one? [1 pt]

• What information does the PCA algorithm use to decide that one principal components is better than another? [1 pt]

• From an optimization point of view, why do we prefer that one? [2 pts]

(d) [3 pts] Compute the vector projection of each of the original sample points (not the centered sample points) onto your
preferred principal component. By “vector projection” we mean that the projected points are still in R2. (Don’t just
give us the principal coordinate; give us the projected point.)
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Q3. [14 pts] Decision Tree Construction
You are Chief Executive Data Scientist for an e-commerce website. You have collected data on some customers who browsed
your site, including whether or not they qualify for free shipping, the time they have spent on the website, whether or not they
subscribed to the company’s newsletter, and whether or not they made a purchase. The table below is your training set. You
want to build a decision tree to predict whether future customers will make a purchase. The rightmost column of the table is
the label you wish to predict. The other columns are the features, except the customer number, which you should use solely to
show us which customers are in which leaves of your decision tree.

Customer Free Shipping Offered Time Spent (min) Newsletter Subscriber Purchase
1 No 12 Yes Yes
2 Yes 20 Yes Yes
3 Yes 12 Yes No
4 No 20 No No
5 No 5 Yes Yes
6 No 20 Yes Yes
7 Yes 12 No No
8 Yes 5 No No
9 No 12 No No

(a) [4 pts] Which feature should you split on at the root of the decision tree to maximize the information gain? Write an
expression for the information gain of the best split. (Your expression can include logarithms and fractions.)

(b) [8 pts] Draw the decision tree that maximizes information gain at each split. The leaves of your tree should be drawn;
write inside each leaf the training points it stores. In the internal treenodes, write the splitting features and splitting values.
There is no need to write any entropies or information gains. Split until all leaves are pure.

(c) [2 pts] For the decision tree in part (b), suppose we limit the tree to a depth of two (where the root counts as depth
zero). That is, the root node can have grandchildren but no great-grandchildren. What will be the training error rate
(misclassified training points divided by all training points) of the impure tree?

8



Q4. [15 pts] Backpropagation on an Arithmetic Expression
Consider an arithmetic network with the inputs a, b, and c, which computes the following sequence of operations, where

s(γ) =
1

1 + e−γ
is the logistic (sigmoid) function and r(γ) = max{0, γ} is the hinge function used by ReLUs.

d = ab e = s(d) f = r(a) g = 3a h = 2e + f + g i = ch j = f + i2

We want to find the partial derivatives of j with respect to every other variable a through i, in backpropagation style. This
means that for each variable z, we want you to write ∂ j/∂z in two forms: (1) in terms of derivatives involving each variable
that directly uses the value of z, and (2) in terms of the inputs and intermediate values a . . . i, as simply as possible but with no
derivative symbols. For example, we write

∂ j
∂i
=

d j
di
= 2i (no chain rule needed for this one only)

∂ j
∂h

=
∂ j
∂i
∂i
∂h
= 2ic (chain rule, then backprop the derivative expressions)

(a) [15 pts] Now, please write expressions for ∂ j/∂g, ∂ j/∂ f , ∂ j/∂e, ∂ j/∂d, ∂ j/∂c, ∂ j/∂b, and ∂ j/∂a as we have written ∂ j/∂h
above. If they are needed, express the derivative s′(γ) in terms of s(γ) and express the derivative r′(γ) as the indicator
function 1(γ ≥ 0). (Hint: f is used in two places and a is used in three, so they will need a multivariate chain rule. It
might help you to draw the network as a directed graph, but it’s not required.)
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Q5. [13 pts] We Hope You Learned This
Consider a two-class classifier for points in a two-dimensional feature space (d = 2). The decision boundaries are circles.
However, the algorithm is a bit dumb, because it can only find classifiers for which the points inside the circle are classified as
class C and the points outside are classified at not-class-C. It cannot create classifiers for which the points inside are not-C and
the points outside are C.

(a) [4 pts] Draw a picture to show that there exists a set of three points in the plane such that our circle classifier shatters the
point set. Specifically, draw all 23 = 8 possible dichotomies (labelings of the points) with their decision boundaries.

(b) [3 pts] There is no set of four points in the plane that our circle classifier can shatter. (Take our word for it.) Suppose that
we build a synthetic (computer-generated, not real-world) training set by randomly sampling training points from some
statistical distribution (over the features and labels together). We want to have a 99% chance that the best circle classifier
(the one that achieves the lowest training error among all possible circle classifiers) has a training error (empirical risk)
that predicts, within a margin of 5%, the test error on infinitely many test points (the true risk). What does the fact that
our classifier cannot shatter four points tell us about the asymptotic number of training points we will need to achieve
this (i.e., the sample complexity in big-Oh notation)?

(c) [3 pts] With the same assumptions as part (b), what statistical assumption do we need to make about the test points to
ensure that we have a 99% chance of achieving the goal stated in (b)? (In general, an arbitrary set of labeled points in
the plane will have a test error unrelated to the training points; we need to consider how the test points are generated or
collected.)

(d) [3 pts] Let’s revisit the classifer from part (a), but now we are classifying points with only one feature—that is, all
our training/test points are numbers in R. The circle classifying software requires two-dimensional points, so we write
wrapper code that appends a zero to the end of each training/test point (as the second feature), then feeds it into the circle
classifying software. Strangely, we can no longer shatter any set of three points (in R). Give an example of a dichotomy
on three distinct points in R that the wrapper-code classifier cannot represent.
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Q6. [20 pts] Quadratic Regression
You are given a design matrix X ∈ Rn×d, storing n training points with d features, and a vector y ∈ Rn of continuously-valued
labels. As usual, let Xi be training point i, expressed as a column vector such that row i of X is X⊤i . We want to perform
least-squares regression with the quadratic regression function h(z) = z⊤Wz (no linear nor constant terms), where W ∈ Rd×d is
symmetric. The objective is to find the symmetric matrix W that minimizes the least-squares cost function

J(W) =
n∑

i=1

(
X⊤i WXi − yi

)2
.

(Note: If you get stuck on one part, try the other parts; each part is independent of solving the others.)

(a) [6 pts] Find ∇W J(W). (Hint: It should be a d × d matrix like W. If you don’t remember how to take a derivative with
respect to a matrix, try writing X⊤i WXi as a summation, but your final answer should have just one summation, over i.)

(b) [4 pts] Suppose that X has rank n. (That is, the training points are linearly independent and n ≤ d.) Let Ii be the row
vector that is row i of the n × n identity matrix; hence, its entries are zero except a 1 at position i. Observe that we can
write training point i as the row vector X⊤i = IiX. Let X+ be the Moore–Penrose pseudoinverse of X. As a prelude to
part (c), show that X⊤i X+ = Ii. (Hint: What do you know about pseudoinverses?)
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(c) [5 pts] Again suppose that X has rank n. Write the labels as a diagonal n × n matrix

Y = diag(yi) =


y1 0 . . . 0
0 y2 0
...

. . .

0 . . . yn

 .
Using (b), show that the cost function J(W) is minimized by W∗ = X+YX+⊤, where X+⊤ denotes the transpose of X+.

(d) [5 pts] Suppose the ground truth for the labels is g(z) = z⊤Az, where A ∈ Rd×d is a fixed, symmetric matrix. Each training
label is drawn from this ground truth with random Gaussian noise; that is, yi = g(Xi) + ϵi where ϵi ∼ N(0, 1). Assume
that the regression function we learn is h(z) = z⊤W∗z where W∗ is given in part (c). Show that the bias of this regression
method at a test point z is

bias(z) = |z⊤(X+diag(X⊤i AXi)X+⊤ − A)z|,

where diag(X⊤i AXi) is a diagonal n × n matrix whose diagonal values are X⊤i AXi.
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