
CS 189
Fall 2016

Introduction to
Machine Learning Midterm

• Do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your one-page cheat sheet.

• Usage of electronic devices is forbidden. If we see you using an electronic device (phone, laptop, etc.) you will
get a zero.

• You have 1 hour and 20 minutes.

• Write your initials at the top right of each page (e.g., write “BR” if you are Ben Recht).

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right

1



Q1. [25 pts] Clip Loss
Let S = {(x1, y1), . . . (xn, yn)} be a set of n points sampled i.i.d. from a distribution D. This is the training set with
xi ∈ Rd being the features and yi ∈ {−1, 1} being the labels. Define the clip loss of a linear classifier w ∈ Rd as

loss(wTx, y) = clip(ywTx)

Where clip is the function

clip(z) =


1 if z < 0

0 if z ≥ 1

1− z otherwise.

For any d-dimensional vector w, define the risk of w as

R[w] = ED[loss(wTx, y)] ,

and the empirical risk of w as

RS [w] =
1

n

n∑
i=1

loss(wTxi, yi) .

(a) [5 pts] Is the function clip convex? If you would like, you can justify your answer by drawing a picture.

(b) [5 pts] Show that if RS [w] = 0 and ‖w‖22 < 1, then the margin of the hyperplane defined by w is greater than 1.
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(c) [5 pts] Prove that ES [RS [w]] = R[w].

(d) [5 pts] Prove that Var(RS [w]) ≤ 1
n .

(e) [5 pts] Is it possible to have a w such that RS [w] = 0, but R[w] > 0? Justify your answer.
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Q2. [25 pts] Regularization
We consider here a discriminative approach for solving the classification problem illustrated in Figure 1.

Figure 1: The two-dimensional labeled training set, where ‘+’ corresponds to class y = 1 and ‘O’ corresponds to
class y = 0.

Suppose we attempt to solve the binary classification task depicted in Figure 1 with the simple linear logistic regression
model

P (y = 1|x,w) = g(w0 + w1x1 + w2x2) =
1

1 + exp(−w0 − w1x1 − w2x2)

Notice that training data can be separated with zero training error with a linear separator.

Consider training regularized logistic regression model where we try to maximize

n∑
i=1

logP (yi|xi, w0, w1, w2)− Cw2
j

for very large C. The regularization penalties used in penalized conditional log-likelihood estimation are −Cw2
j

where j ∈ {0, 1, 2}. In other words, only one of the parameters is regularized in each case. Given the training data in
Figure 1, how does the training error change with regularization of each parameter wj? State whether the training
error increases or stays the same (zero) for each wj for large C. Provide a brief justification for each of your answers.

(a) [5 pts] By regularizing w2

(b) [5 pts] By regularizing w1

(c) [5 pts] By regularizing w0
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Now suppose we want to regularize both w1 and w2. This means we want to maximize the penalized log-likelihood

n∑
i=1

logP (yi|xi, w0, w1, w2)− C(w2
1 + w2

2)

Consider again the problem in Figure 1 and the same linear logistic regression model P (y = 1|x,w) = g(w0 +w1x1 +
w2x2).

(d) [5 pts] For very large C, which value(s) do you expect w0 to take? Explain briefly. (Note that the number of
points from each class is the same.) (You can give a range of values for w0 if you deem necessary).

(e) [5 pts] Assume that we obtain more data points from the ‘+’ class that corresponds to y = 1 so that the
class labels become unbalanced. Again for very large C, with the same regularization for w1 and w2 as above,
which value(s) do you expect w0 to take? Explain briefly. (You can give a range of values for w0 if you deem
necessary).
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Q3. [25 pts] Bias-variance tradeoff in linear regression
Recall the statistical model for linear regression from lecture. Fix a set of points x1, x2, ..., xn ∈ Rd and an unknown
regressor θ∗ ∈ Rd. Suppose we observe y1, y2, ..., yn ∈ R via the process

yi = xTi θ∗ + εi,

where the noise vector ε :=


ε1
ε2
...
εn

 ∈ Rn satisfies

Eε = 0, Cov(ε) = σ2In .

Using the convention from lecture, we write

X :=


−xT1−
−xT2−

...
−xTn−

 ∈ Rn×d, Y :=


y1
y2
...
yn

 ∈ Rn .

With this notation, our statistical model is equivalent to

Y = Xθ∗ + ε .

You may assume throughout this problem that the matrix XTX is invertible. Recall the two least-squares estimators
we studied in lecture

θ̂ols = arg min
θ∈Rd

1

2
‖Xθ − Y ‖22 (OLS)

θ̂ridge = arg min
θ∈Rd

1

2
‖Xθ − Y ‖22 +

λ

2
‖θ‖22 (Ridge) .

For the Ridge estimator, you can assume that λ > 0 is known and fixed throughout the problem.

(a) [5 pts] Write down the closed form solutions for θ̂ols and θ̂ridge. Simply state the answer, no need to rederive it.
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(b) [5 pts] Let θ̂ ∈ Rd denote any estimator of θ∗. In the context of this problem, an estimator θ̂ = θ̂(X,Y ) is any
function which takes the data X and a realization of Y , and computes a guess of θ∗.

Define the MSE (mean squared error) of the estimator θ̂  as

MSE(θ̂) := E‖θ̂ − θ∗‖22 .

Above, the expectation is taken w.r.t. the randomness inherent in ε. Define µ̂ := Eθ̂. Show that, as we did in 
lecture, the MSE decomposes as such

MSE(θ̂) = ‖µ̂ − θ∗‖22 + Tr(Cov(θ̂)) .

Hint: Expectation and trace commute, so E Tr(A) = Tr(EA) for any square matrix A.

(c) [5 pts] Show that

Eθ̂ols = θ∗, Eθ̂ridge = (XTX + λId)−1XTXθ∗ .

That is, θ̂ols is an unbiased estimator of θ∗, whereas θ̂ridge is a biased estimator of θ∗. 
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(d) [10 pts] Let γ1 ≥ γ2 ≥ ... ≥ γd denote the d eigenvalues of the matrix XTX arranged in non-increasing order.
First, argue that the smallest eigenvalue, γd, is positive (i.e. γd > 0). Then, show that

Tr(Cov(θ̂ols)) = σ2
d∑
i=1

1

γi
, Tr(Cov(θ̂ridge)) = σ2

d∑
i=1

γi
(γi + λ)2

.

Finally, use these formulas to conclude that

Tr(Cov(θ̂ridge)) < Tr(Cov(θ̂ols)) .

NOTE: The inequality above was incorrectly stated on the exam. It is fixed in the solutions. Because of this, 
we are awarding one free point for every student regardless of whether or not they attempted this question. 
Hint: For the Ridge variance, consider writing XTX in terms of its eigen-decomposition UΣUT.
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Q4. [15 pts] Nonlinear regression
In this problem, we’ll come up with a method for estimating the acceleration on an object from noisy measurements
of its position. We have noisy observations of the position of an object (p(t)) (in 1D) at n points in time:

pv = [p0, . . . , pn]

tv = [t0, . . . , tn].

pi is a noisy measurement of p(ti). We believe the object is undergoing constant acceleration (a = p′′(t)).

Note that this means that p(t) = 1
2at

2 + v(0)t+ p(0) where v(0) is the initial velocity and p(0) is the initial position
of the object.

(a) [5 pts] Suppose that v(0) = 0 and p(0) = 0. Write down a least squares problem to estimate a from the noisy
measurements pv.

(b) [5 pts] Solve the optimization problem and give your answer in terms of pv and tv.

(c) [5 pts] Now suppose the initial position and the velocity of the object are unknown; write down (but don’t
solve) a least squares problem to estimate the initial position and velocity along with the acceleration of the
object.
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