
CS 189/289A Introduction to Machine Learning
Fall 2022 Jennifer Listgarten, Jitendra Malik Midterm

• Please do not open the exam before you are instructed to do so.

• Electronic devices are forbidden on your person, including cell phones, tablets, head-
phones, and laptops. Leave your cell phone off and in a bag; it should not be visible during
the exam.

• The exam is closed book and closed notes except for your one-page 8.5×11 inch cheat sheet.

• You have 1 hour and 50 minutes (unless you are in the DSP program and have a larger time
allowance).

• Please write your initials at the top right of each page after this one (e.g., write “JD” if you
are John Doe). Finish this by the end of your 1 hour and 50 minutes.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• For multiple choice questions, fill in the bubble for the single best choice.

• For short and long answer questions, write within the boxes provided.

• The last question (Question 7) is for CS289A students only. Students enrolled in CS189
will not receive any credit for answering this question.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right

⃝ CS 189

⃝ CS 289A
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1 Multiple Choice
For the following questions, select the single best response. Each question is worth 1.5 points.

1. Assume a linear model Y = Xw∗ + z, where z ∼ N(0, In) and w∗ is the true parameter we are
trying to estimate. Consider the following objective:

ŵ = argminw∈Rd ∥Xw − Y∥22 + λ∥w∥
2
2 λ > 0 (1)

How will increasing λ in Equation 1 affect the bias of the resulting estimator ŵ?

⃝ Bias will increase.

⃝ Bias will decrease.

⃝ Bias will remain unchanged.

2. How will increasing λ in Equation 1 affect the variance of the resulting estimator ŵ?

⃝ Variance will increase.

⃝ Variance will decrease.

⃝ Variance will remain unchanged.

3. Consider the following probability density function:

Select the best description.

⃝ X and Y appear to be both marginally and jointly Gaussian.

⃝ X and Y appear to be marginally Gaussian but not jointly Gaussian.

⃝ X and Y appear to be jointly Gaussian but not marginally Gaussian.
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4. For this question, X ∈ Rn×d denotes an input data matrix of rank d, y ∈ Rn an outcome vector,
wridge the ridge regression solution, and wOLS the solution to unregularized linear regression.
Select the false statement.

⃝ For all X and true linear predictors w∗ ∈ Rd, under the statistical assumption
y = Xw∗ + z, z ∼ N(0, σ2In), we have bias(wridge) ≥ bias(wOLS), where the bias of
an estimate ŵ of w∗ is defined as bias(ŵ) = ∥E[ŵ] − w∗∥2.

⃝ For all X and y, ∥wridge∥2 ≤ ∥wOLS∥2.

⃝ For all X and y, ∥wridge∥1 ≤ ∥wOLS∥1.

5. Suppose you have a dataset where the label is binary and generated by a fair coin toss and the
input features are generated by sampling i.i.d. from a standard Gaussian, independently of the
label. Let n denote the number of examples in your dataset and d the number of input features.
You perform logistic regression using a random 70/30 train-validation split. Let Acctrain denote
the training accuracy and Accval the validation accuracy. Select the false statement.

⃝ As n→ ∞, Acctrain approaches 50%.

⃝ As n→ ∞, Accval approaches 50%.

⃝ As d → ∞, Acctrain approaches 100%.

⃝ As d → ∞, Accval approaches 100%.

6. You are walking down Shattuck Ave. when you find a quarter on the ground. You see nothing
unusual about this quarter, so you figure it is almost certainly a fair coin, though you realize
that manufacturing irregularities in the coin minting process mean that coins are rarely exactly
fair. You toss the coin 10 times and observe the following outcomes:

H H H H H H H H H T

with H denoting heads and T denoting tails. Assume coin tosses are independent. What is the
maximum likelihood estimate of the next toss being heads?

⃝ 5
10

⃝ between 5
10 and 9

10

⃝ 9
10

⃝ more than 9
10

7. Consider the setup of the previous problem (Problem 6). What is the maximum a posteriori
(MAP) estimate of the next toss being heads?

⃝ 5
10

⃝ between 5
10 and 9

10

⃝ 9
10

⃝ more than 9
10
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8. Consider a binary classification problem with two outcomes: positive and negative. The F1

score of a classifier in such a problem is the harmonic mean between its precision and recall:

F1 = 2
p · r
p + r

.

Select the true statement relating a classifier’s F1 score on the test set to the bias and variance
of its estimated parameters. You may assume the classifier is operating in the classical (non-
interpolating) regime of bias and variance.

⃝ Low bias implies a high F1 score.

⃝ Low variance implies a high F1 score.

⃝ A low F1 score implies a high variance.

⃝ A high F1 score implies low bias.

9. Which of the following could depict the probability density function of a multivariate Gaussian

with covariance matrix Σ =
 σ2

X cov(X,Y)
cov(Y, X) σ2

Y

 = 2.5 0.5
0.5 0.5

?

(a) (b) (c) (d)

⃝ (a)

⃝ (b)

⃝ (c)

⃝ (d)

10. Julia is using SNE to visualize her high-dimensional dataset in two dimensions. She runs her
code twice to find that it outputs different visualizations each time. Why is this expected? You
may assume that Julia did not intentionally make her code deterministic by, for example, fixing
the random seed.

⃝ This is expected due to the nonconvexity of the optimization objective, and also
occurs with t-SNE.

⃝ This is expected due to the Gaussian distributions in SNE, and could be addressed
by using t-SNE instead.

⃝ This is expected due to the iterative nature of SNE, and could be addressed by using
PCA to find the solution to the SNE objective without gradient descent.
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2 Short Answer
1. (2 points) Let X ∈ Rn×d denote a mean-centered data matrix. with an SVD of X = UΣV ⊤,

where the singular values are ordered in Σ left to right by size σ1 ≥ σ2 ≥ . . .. Write the rank-k
PCA reconstruction of X . You may denote the submatrix consisting of the first k columns of
a matrix M as Mk.

2. (2 points) Consider the following conditional distributions of X, a discrete random variable
taking values in {0, 1, 2, 3, 4, 5}, given a binary label Y:

X 0 1 2 3 4 5
P(X|Y = 1) 0.1 0.1 0.1 0.2 0.2 0.3
P(X|Y = 0) 0.3 0.2 0.2 0.1 0.1 0.1

If the prior label probabilities are P(Y = 0) = P(Y = 1) = 1
2 , calculate the Bayes risk, i.e. the

minimum probability of misclassification by a classifier taking X as input.

3. (2 points) Big Bird is training a five-layer neural network with ReLU activations to classify
MNIST digits. His current network achieves a 90% validation accuracy. He wants to try differ-
ent activation functions to try to improve his network. Will the validation accuracy increase or
decrease when he replaces the ReLU function with the identity function? Justify your answer
in a short sentence.
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4. (2 points) Consider wOLS, the maximum likelihood estimate for w in the model

y =Xw + z z ∼ N(0, σ2I).

How does wOLS compare to the MAP estimate wMAP if you additionally assume a Gaussian
prior N(0, σ2I) on w?

5. (2 points) Consider once again the MAP estimate wMAP under the model of the previous ques-
tion and the same Gaussian prior N(0, σ2I). If the ith dimension of the estimate wMAP is equal
to 0:

(wMAP)i = 0,

what must be true of X and y? Assume that each feature of the data has mean 0 and that the
data have been whitened such that X⊤X = nI .

6. (2 points) In class and in your homework, you learned about the Rectified Linear Unit (ReLU)
activation function. A related activation function is the Gaussian Error Linear Unit (GELU)
activation function, defined as:

G(x) = xP(X ≤ x) = x
∫ x

−∞

p(z)d(z)

in which X ∼ N(0, 1), P(X ≤ x) is the CDF of a standard Gaussian, and p(x) is the PDF of the
standard Gaussian. Find the derivative of the GELU function dG(x)

dx in terms of x, X, p, and P.

Midterm,©UCB CS 189/289A, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7



initial here

7. (2 points) Consider a Gaussian covariance matrix Σ ∈ R2×2 with the following eigenvectors: 1
√

2
1
√

2

 with eigenvalue 4, and

 1
√

2
− 1
√

2

 with eigenvalue 2.

Write Σ as a 2 × 2 matrix.

8. (2 points) Consider a covariance matrix Σ with the same eigenvectors and eigenvalues as de-
scribed in the previous question. Find the square root Σ

1
2 of Σ, once again simplifying to a

2 × 2 matrix.

9. (2 points) Gina is training a neural network with two hidden layers to classify MNIST digits.
Each image has 28 × 28 = 784 features. The two hidden layers of the network both have 100
hidden units, and the output is one-dimensional. All layers (including the output) have a bias
term. How many learnable parameters does the neural network have?
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10. (2 points) Consider the following datapoints in R2:

On the graph below, draw the two principal directions that PCA would return if run on the
datapoints. Indicate which component explains more variance.
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3 Fishing with a MAP
Oski is fishing for salmon. There are many types of fish in the great outdoors, so Oski is
interested in the number of fish he must catch before finding a salmon. Oski realizes that he
can model this as a geometric random variable

p(x | θ) = (1 − θ)x−1θ,

in which θ is the underlying probability that a fish is a salmon, and x − 1 is the number of fish
Oski catches before his first salmon.

(a) (2 points) Given a dataset of n trials D = {x1, x2, . . . , xn}, write down the log likelihood
function log p(D | θ). For the rest of this problem, you may assume that any stationary
point of the log likelihood function is the global maximum.

(b) (1 point) Suppose Oski only has a single datapoint: x1 = 4. What is the maximum
likelihood estimate θ̂MLE?
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(c) (2 points) Now suppose that Oski has collected many salmon, and has many datapoints
{xi}

n
i=1. Write an expression for the maximum likelihood estimate, θ̂MLE, as a function of

the datapoints.

(d) (3 points) Oski realizes that a maximum likelihood estimate of θ might have been un-
reliable when he only had a single data point. He considers instead using maximum a
posteriori (MAP) estimation by putting a prior p(θ) on θ. He settles on a Beta(α, β)
distribution:

p(θ) = Beta(α, β) =
1

B(α, β)
θ α−1(1 − θ) β−1,

in which α and β are constants and B(α, β) is a normalizing constant. Show that the
posterior distribution over parameters p(θ | x) is Beta(γ, δ), writing γ and δ in terms of α,
β, θ and a single datapoint x. (Do not plug in x = 4 as in part (b).)

Midterm,©UCB CS 189/289A, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11



initial here

4 Neural Networks and Backpropagation
Abby is experimenting with a nonstandard neural network architecture, depicted below.

x

w⊤1 x σ(z1) z2z2

w⊤2 x

log(z4 · z4)

w4z4

Ax Tr(z7z⊤7 )

x + w3 f (z9) ∥z10∥
2
2 ReLU(z11)

z3 + z5 + z6 + z8 + z12 ψ

z1 z2

z4

z4

z7

z9 z10 z11

z12

z3

z5

z6

z8

The input x ∈ Rd and output ψ ∈ R are enclosed in rectangles. The parameters are:

w1,w2,w3 ∈ R
d w4 ∈ R A ∈ Rd×d

Computations are enclosed in circles. Intermediate activations are denoted as zi and drawn on
their corresponding edges. In this figure, σ : R → R is the sigmoid activation function and
f : Rd → Rd denotes a function that subtracts the mean of a vector from itself:

σ(y) =
1

1 + e−y f (y) = y −
1
d

d∑
i=1

(y)i1d

in which 1d is the all-ones vector in Rd and (y)i denotes the ith entry of y.

Abby now wants to train her network. In this problem, you will compute some of the deriva-
tives needed to do so. Write all answers in terms of variables present in Figure 1.

(a) (2 points) ∂ψ

∂w1
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(b) (2 points) ∂ψ

∂w2

(c) (3 points) ∂ψ

∂A

(d) (3 points) ∂ψ

∂w3
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5 Monitoring Regression

Kermit has found a bin of unused computer monitors lying around the EECS department.
Many of the monitors are broken, but a few are still functional. Kermit decides to build a
simple model to predict whether a given monitor will work. He encodes monitor i as a single
feature xi ∈ {−1, 1} depending on its color. He also records whether monitor i is functional
with a single indicator label yi ∈ {0, 1}. Specifically,

xi =

1 if monitor i is beige
−1 otherwise

yi =

1 if monitor i is functional
0 otherwise

Kermit checks N monitors total and aggregates his findings into a dataset X ∈ {−1, 1}N with
labels Y ∈ {0, 1}N:

X =
[
x1 x2 · · · xn

]⊤
Y =

[
y1 y2 · · · yn

]⊤
(a) (2 points) Let nx,y denote the number of monitors for which xi = x and yi = y. For

example, n+1,0 denotes the number of non-functional beige monitors. Specifically:

n−1,0 =
∣∣∣{i | xi = −1 and yi = 0}

∣∣∣ n−1,1 =
∣∣∣{i | xi = −1 and yi = 1}

∣∣∣
n+1,0 =

∣∣∣{i | xi = 1 and yi = 0}
∣∣∣ n+1,1 =

∣∣∣{i | xi = 1 and yi = 1}
∣∣∣

Show that the solution to the linear regression objective

wOLS = argminw∈R ∥Xw − Y∥22

is given by

wOLS =
n+1,1 − n−1,1

n
.
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(b) (3 points) Recall the logistic regression problem in one dimension:

argminw∈R f (w) = argminw∈R

− n∑
i=1

yi log
(
σ(wxi)

)
+ (1 − yi) log

(
1 − σ(wxi)

)
in which σ is the sigmoid function, σ(z) = 1

1+e−z . Show that

d f (w)
dw

= X⊤(σ(Xw) − Y)

in which σ(Xw) denotes the result of applying σ elementwise to Xw.
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(c) (4 points) Let

p̂ =
n+1,1 + n−1,0

n
.

Show that a solution to the logistic regression problem in the previous part is given by:

w = log
(

p̂
1 − p̂

)
.
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6 Classification with hedging

Consider a classification problem with c classes. The input is denoted as x and the label as
y ∈ {1, 2, . . . , c}. Suppose we allow our prediction to take one of 2c values:

1, 2, . . . , c, 1hedge, 2hedge, . . . , chedge.

The ihedge option represents a not-entirely-sure guess for class i. When one hedges one’s bets
by predicting ihedge instead of i, the reward for being correct decreases, but the penalty for
being wrong also decreases.

L( f (x), y) =


1 if f (x) ∈ {1, 2, . . . , c} and f (x) , y

0 if f (x) ∈ {1, 2, . . . , c} and f (x) = y

λe if f (x) ∈ {1hedge, 2hedge, . . . , chedge} and f (x) , y

λ f if f (x) ∈ {1hedge, 2hedge, . . . , chedge} and f (x) = y

where 0 < λe, λ f < 1. The risk of a classifier f evaluated at input x is

R( f (x) | x) =
c∑

i=1

L( f (x), i) P(Y = i | x).

(a) (1 point) Let us assume that λ f < λe. Explain why this is a reasonable assumption.

(b) (2 points) Find the minimizers

argmin
i∈{1,2,...,c}

R(i | x) and argmin
i∈{1,2,...,c}

R(ihedge | x).

Express your answers as simple statements involving the conditional label probabilities
P(Y = i | x) for i ∈ {1, 2, . . . , c}.
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(c) (2 points) Given some i ∈ {1, 2, . . . , c}, when is R(ihedge | x) ≤ R(i | x)? Express your
answer as an inequality in which the left hand side is P(Y = i | x) and the right hand side
is an expression involving λe and λ f .

(d) (1 point) Give an intuitive explanation for what happens when λ f = 0.

(e) (2 points) Find a risk-minimizing predictor f ∗(x).
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7 Visualizing high-dimensional data (CS289A only)

Only complete this problem if you are enrolled in CS289A.
Do not complete this problem if you are enrolled in CS189.

In this problem, we will explore an approach for visualizing N high-dimensional datapoints
{x1, x2, . . . , xN}, xi ∈ R

d as two-dimensional embeddings {y1, y2, . . . , yN}, yi ∈ R
2.

(a) (2 points) Given a point xi, we would like to model a distribution over all other points x j

(i , j). The probability of sampling point x j should decrease as x j gets further away from
xi, so we begin by defining a Gaussian distribution centered at each of the points xi:

P(x | xi) = N(x | xi,Σ) =
1

(2π)
d
2 |Σ|

1
2

exp
{
−

1
2

(x − xi)⊤Σ−1(x − xi)
}
.

Let Σ = σ2Id for all such distributions. The probability of sampling point x j given point xi

is then given by normalizing the probabilities under the Gaussian data-generating process:

pi j =
P(x j | xi)∑

k,k,i P(xk | xi)
.

Show that pi j can be expressed as,

pi j =
exp

(
−d2

i j

)
∑

k,k,i exp
(
−d2

ik

)
in which

d2
i j =

∥∥∥xi − x j

∥∥∥2

2σ2 .
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We now define an analogous conditional sampling distribution over the two-dimensional
points y j. We will assume a covariance of Σ = 1

2 I for the two-dimensional Gaussian
distributions to simplify notation. Specifically, let the probability of sampling point y j

given point yi be given by:

qi j =
Ei j

Zi

in which

Ei j := exp
(
−d̂2

i j

)
Zi :=

∑
k

k,i

exp
(
−d̂2

ik

)
d̂2

i j =
∥∥∥yi − y j

∥∥∥2

E and Z are often referred to as the energy and partition functions in machine learning.

(b) (2 points) The Kullback-Leibler (KL) divergence, DKL(P ∥ Q), is a popular statistical
distance to measure the difference between two distributions P and Q. KL divergence is
given by

DKL(pi ∥ qi) :=
∑

j

pi j log
pi j

qi j

Show that KL divergence penalizes a mismatch of a large pi j with a small qi j more severely
than a mismatch of small pi j with a large qi j. For simplicity and in this part only, consider
only a single term in the sum without trying to reason over the entire sum. Explain in a
few words why this is a desirable property of a loss function that aims to model the local
structure in data.
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Define the cost of overall mapping to be the sum of KL divergences over the data,

C =
∑

i

DKL
(
pi∥qi

)
=

∑
i

∑
j

j,i

pi j log pi j −
∑

i

∑
j

j,i

pi j log Ei j +
∑

i

∑
j

j,i

pi j log Zi

We would like to optimize this cost function with respect to the two-dimensional
embeddings yk (everything else is fixed) with a gradient based optimization procedure
like SGD.

(c) (0.5 points) First show that,
∂ log Ek j

∂yk
= 2(y j − yk)

(d) (0.5 points) Now show that,

∂Zi

∂yk
=


∂Eik
∂yk

if i , k∑
j, j,k

∂Ek j

∂yk
if i = k
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(e) (3.0 points) Finally show that,

∂C
∂yk
= 2

∑
j

(
yk − y j

) (
pk j − qk j + p jk − q jk

)

(f) (2.0 points) Find the Big O(·) time complexity of an efficient implementation of one step
of gradient descent on the data embeddings {yi}

N
i=1. Write the complexity in terms of the

number of datapoints N and their dimensionality d.
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