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1 Multiple Choice
For the following questions, select the single best response.

1. You and your friend are trying to estimate the probability of heads p of a coin. To do this, you
both perform a MAP estimate with a binomial likelihood, and you each hand-select a Gaussian
prior. You are pretty confident the coin is fair, so you use the prior p ∼ N(0.5, 0.042). Your
friend does not share your confidence and uses the prior p ∼ N(µ, σ2). You each flip the coin
100 times and plot your estimate over time starting from n = 0 to n = 100 trials.

(0.5 points) What is most likely to be true about the mean of your friend’s prior µ?

⃝ µ > 0.5

⃝ µ < 0.5

⃝ µ = 0.5

(0.5 points) What is most likely to be true about the variance of your friend’s prior σ2?

⃝ σ2 > 0.042

⃝ σ2 < 0.042

⃝ σ2 = 0.042

(0.5 points) What is most likely to be true about the true probability of heads p?

⃝ p = 0.6

⃝ p = 0.55

⃝ p = 0.5
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Solution: The correct answer is A, A, B.

Your friend’s initial estimate with no data is higher, so µ > 0.5. Your friend’s estimate is much
more sensitive to the data in the first few trials, so σ2 > 0.042. With 100 trials, the contribution
of the prior is small, and both you and your friend arrive at roughly at p = 0.55, so we can say
with high confidence p = 0.55.

2. (1.5 points) Suppose we observe the following sequence of values:

D = (2, 2, π, 5,
100

3
, π2, 52, 3, 5, 6)

We hypothesize that our data is generated i.i.d. from a continuous uniform distributionU[a, b].
What is the joint MLE of a, b?

⃝ a∗ = 2, b∗ = 52.
⃝ a∗ = b∗, and a∗ is the mean ofD.
⃝ a∗ = −48, b∗ = 102.
⃝ a∗ = µ − 2σ, b∗ = µ + 2σ, where µ, σ are the mean and variance ofD, respectively.

Solution: The correct answer is A.

We compute argmax
a,b

L(a, b;D) = argmax
a,b

pa,b(D) = argmax
a,b

∏
d∈D

pa,b(d). Note that the value

of the uniform PDF is 0 if we observe any value outside the range [a, b], so a ≤ minD and
b ≥ maxD. Any point d ∈ [a, b] has p(d) = 1

b−a . So we find

argmax
a,b

L(a, b;D) = argmax
a≤minD,b≥maxD

∏
d∈D

pa,b(d)

= argmax
a≤minD,b≥maxD

∏
d∈D

1
b − a

= (2, 52)

3. (1.5 points) Let X = [x1, x2]T be a 2-dimensional Gaussian random variable with mean zero
whose probability density function is illustrated by the below contour plot.

Which of the following is most likely to be the correct covariance matrix for X:
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⃝

 2 1
−1 5


⃝

 2 −1
−1 5


⃝

 5 −1
−1 2


⃝

 5 1
−1 2


Solution: The correct answer is C.

x1 has a greater variance than x2, indicating that the top-left entry in the covariance matrix
must be greater than the bottom-right entry. Moreover, x1 and x2 are anti-correlated so the
non-diagonal entries must be negative.

4. (1.5 points) Which of the following statements about regularization is false?

⃝ The LASSO objective is convex.

⃝ You can combine different forms of regularization.

⃝ It is not possible to add an L2-regularization term to the cost function of a neural
network.

⃝ Weight sharing in convolutional neural networks can be viewed as regularization.

Solution: The correct answer is C.

A is true. The OLS objective is convex and the L1-penalty is also convex. The sum of two
convex functions is also convex. B is true. One example is the ElasticNet objective, which
combines L1 and L2 regularization. C is false. You can add an L2-penalty to the cost function
of a neural network, and differentiate it with respect to the parameters of said network, just
like ridge regression. D is true. Weight sharing in CNNs is a form of regularization because
we are imposing the prior that local patterns in an image, irrespective of their spatial location,
should have the same representation.

5. (1.5 points) Which of the following statements about generative vs discriminative models for
classification is true?

⃝ Logistic regression is a generative approach.

⃝ Consider a method where we use MLE to fit Gaussian distributions to features, con-
ditioned on each class, then choose the most likely class. This approach is genera-
tive.

⃝ Generative models directly model p(y | x), where x denotes input features and y
denotes output labels.

⃝ Suppose our data is linearly separable, and we choose a separating hyperplane by
maximizing the distance from the nearest data points of each (binary) class. This is
a generative approach.
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Solution: The correct answer is B.

Generative models model p(x | y). (This method is known as Gaussian discriminant analysis.)
A is false since logistic regression directly models p(y | x). C is false since generative models
model the joint (or class-conditional) distribution. D is false as we don’t model any probability
distribution–we geometrically choose a separating hyperplane.

6. (1.5 points) Which of the following statements about stochastic gradient descent (SGD) is
false?

⃝ The computation time it takes for SGD to converge is always greater than that of
standard gradient descent.

⃝ SGD can be used to find approximate solutions to non-convex problems.

⃝ SGD is more memory efficient than standard gradient descent.

⃝ Due to its stochastic nature, SGD can escape local minima.

Solution: The correct answer is A.

A is false. SGD typically requires more updates to converge, but each update is less compu-
tationally expensive than an update in standard gradient descent. For this reason, SGD can be
overall faster than standard gradient descent. B is true. There is no reason why SGD could
not be used for non-convex problems as long as the problem is differentiable. C is true. SGD
performs updates using only a single or a small subset of training samples, which typically
requires less memory than standard gradient descent. D is true. The noise introduced by the
stochastic updates can help the algorithm jump out of local minima.

7. (1.5 points) Which of the following statements about the backpropagation algorithm is true?

⃝ Backpropagation cannot be used to compute the gradients for self-attention layers.

⃝ Backpropagation requires neural networks to use activation functions that are differ-
entiable everywhere.

⃝ Backpropagation requires a forward pass to be run through a neural network before
the backward pass can be called.

⃝ The gradients computed during backpropagation can only be used for gradient de-
scent.

Solution: The correct answer is C.

The forward pass through the neural network must be run first so any numerical values required
during backpropagation can be cached in memory. A is wrong because backpropagation can be
used to compute the gradients for virtually every kind of neural network layer used in practice
(also note that a self-attention layer is just a different composition of the same basic layers for
which we coded backprop for in homework 3). B is wrong because backpropagation works
with networks that use ReLU (you can let the derivative at x = 0 be either 0 or 1). D is wrong
because backpropagation is just an algorithm for computing gradients, and these gradients can
be used for any purpose.

8. (1.5 points) Suppose a convolutional layer has the following specifications:
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• Input dimensions: [height = 10, width = 10, channels = 5]
• Output dimensions: [height = 10, width = 10, channels = 20]
• Kernel size: [height = 2, width = 2]
• Each kernel also contains an additional bias term.

How many trainable parameters are there in this convolutional layer?

⃝ 80
⃝ 100
⃝ 400
⃝ 420

Solution: The correct answer is D.

Each kernel has (2 × 2 × 5 + 1) = 21 parameters, where the additional one represents the bias
term. There are 20 such kernels, so in total there are 21 × 20 = 420 parameters.

9. (1.5 points) Which of the following statements about Transformers is false?

⃝ Transformers use attention to make the loss convex.
⃝ Masked attention is only necessary in the decoder.
⃝ A constant positional encoding is equivalent to no positional encoding.
⃝ None of the above, they are all true.

Solution: The correct answer is A.

A is false, attention does not guarantee convexity. B is true, the goal of masked attention is
to prevent the decoder from attending to values it needs to predict in the future. C is true, if
the positional encoding is constant across tokens, then no extra information is added. D is
incorrect since A is false.

Note: during the exam we clarified the question should be read as “Which of the first three
statements about Transformers is false? If None are false, select the last statement.”

10. (1.5 points) The method t-SNE is used to visualize high-dimensional data in a lower dimen-
sional space. Which of the following statements regarding t-SNE is false?

⃝ The method is stochastic.
⃝ The method tries to match neighborhood probabilities in the high-dimensional space

and the low-dimensional space.
⃝ The method uses total variation distance in its loss function, hence the name “total

variation SNE”.
⃝ The method uses a t-distribution to prevent crowding in the low dimensional space.

Solution: The correct answer is C.

t-SNE uses the KL-divergence, not total variation distance, in its loss function. The method
stands for “t-distributed SNE” because it switches from the Gaussian used by SNE to a t-
distribution in the low dimensional space.
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2 Short Answer
1. (2 points) Let Y be a multivariate Gaussian that can be expressed as AX, where A ∈ R3×3 is a

matrix and X ∈ R3 is a collection of i.i.d. standard normal RVs. Assume that Y has zero mean.
What is ΣY , the covariance of Y?

Solution: We know that E[Y] = 0. Since X is a collection of i.i.d. standard normal RVs,
ΣX = I3. Therefore, we can rewrite ΣY as

ΣY = E
[
(AX − 0)(AX − 0)⊤

]
= AE

[
XX⊤
]

A⊤ = AΣXA⊤

This simplifies to ΣY = AIA⊤ = AA⊤.

2. Suppose we have a dataset of independent and identically distributed data points

{(x1, y1), (x2, y2), . . . , (xn, yn)}

where xi ∈ R and yi ∈ {0, 1}. Further assume that that data from the two classes fall on
different sides of the origin (i.e. yi = 0 when xi < 0 and yi = 1 when xi > 0). We train a
logistic regression model (without an intercept term) defined by

p(yi = 1 | xi) =
1

1 + e−βxi
.

(a) (1 point) For what values of β ∈ R will the model obtain a perfect accuracy on the
dataset? Recall that for binary-classification, perfect accuracy is achieved if p(yi = 1 |
xi) > 0.5 when yi = 1 and p(yi = 1 | xi) < 0.5 when yi = 0.

(b) (1 point) Say that there is some β̂ that obtains perfect accuracy. Find a β∗ that also ob-
tains perfect accuracy but increases the log-likelihood (or equivalently, lowers the cross-
entropy loss) compared to β̂.

Solution: Any β > 0 will achieve perfect accuracy on this dataset, and increasing the β will
increase the log-likelihood.

3. (2 points) The SiLU (sigmoid linear unit) function is defined as follows

SiLU(x) = x · σ(x)

where σ(x) is the sigmoid function. For this question, we will only consider scalar inputs
x ∈ R. The derivative of the SiLU function can be written as

d
dx

SiLU(x) = b[1 + a · (1 − b)]

What are the missing terms a and b?

Solution: The derivative of the sigmoid function is σ(x) · (1 − σ(x)).

For the SiLU function, we again apply the chain rule where u = x, v = u · σ(u)

d
dx

SiLU(x) = 1 · σ(x) + x · σ(x) · (1 − σ(x))

= σ(x)[1 + x · (1 − σ(x))]

Therefore a = x and b = σ(x).
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4. (2 points) Suppose we have a convolutional layer composed of a single filter where the bias
parameter is zero and the weight parameter is

W =
1 0
1 0


Consider the following input X containing a single channel

X =


0 0 0
1 2 0
0 3 4


Calculate the (pre-activation) output of the convolutional layer applied on X, with no padding
and a stride of 1.

Solution: Since we only have one filter, we know that our output will be a single channel. Let

Z11 = ⟨X[0 : 2, 0 : 2],W⟩F
Z12 = ⟨X[1 : 3, 0 : 2],W⟩F
Z21 = ⟨X[0 : 2, 1 : 3],W⟩F
Z22 = ⟨X[1 : 3, 1 : 3],W⟩F

Then,

Z =
Z11 Z12

Z21 Z22

 = 1 2
1 5


5. (2 points) Consider a convolutional layer with the following description:

• Number of filters: 128

• Kernel size: 4x4

• Stride: 2

• Padding size: 1

Calculate the output shape [n, c, h,w] after applying the convolutional layer to an input of
shape [32, 3, 28, 28]. The shapes are ordered as [batch size, number of channels, height, and
width].

Solution: The output height and width is given by

⌊
input − kernel size + 2 · padding size

stride
⌋ + 1.

Plugging in we get that the output height and width are both 14. The output number of channels
is the number of filters, 128, and the output batch size is the same as the input batch size, 32.
Our final answer is [32, 128, 14, 14].
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6. (2 points) Suppose we are applying self-attention (with one head) on n tokens. Let q1, . . . , qn

be the query vectors, k1, . . . , kn be the key vectors, and v1, . . . , vn be the value vectors.

Assume that qi is orthogonal to the key vectors for all tokens (including that for token i). What
will the output of self-attention be for token i?

Solution: The attention weight between token i and any other token j is equal to the following:

Attention(qi, k j) =
exp
{
qT

i k j

}
∑n
ℓ=1 exp

{
qT

i kℓ
}

=
e0∑n
ℓ=1 e0

=
1
n

Therefore, the self-attention output will be 1
n

∑n
i=1 vi.

Note that the result is the same for scaled dot-product attention with the 1
√

d
scaling term, where

d is the dimension of the queries and keys.

Note: during the exam we clarified that in this question we are using unmasked self-attention.

7. (2 points) Consider the following design matrix containing sample points Xi ∈ R2.

X =


1 1
1 −1
−2 0


Using PCA, what is the first principal component and its explained variance?

Solution: X is already centered, so X = X̄.

The covariance matrix 1
n X̄T X̄ = 1

3

6 0
0 2

 = 2 0
0 2

3

. Since the matrix is diagonal, the eigenvec-

tors and eigenvalues are

v1 =

10
 , λ1 = 2

v2 =

01
 , λ2 =

2
3

Therefore, the first principal component and its explained variance are v1 =

10
 , λ1 = 2.

8. (2 points) Describe one advantage of t-SNE over PCA and one advantage of PCA over t-SNE.

Solution: Advantage of t-SNE:

• Can capture complex, non-linear patterns in the data
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Advantages of PCA:

• t-SNE has no explicit projection mapping (making it less interpretable)

• SVD provides an efficient way to compute the global minima (t-SNE requires less effi-
cient optimization algorithms that can get stuck in local minima)

• Can embed new points into the low dimensional space without updating the embedding
space
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3 A Classifier for Count Data

We consider a binary classification problem in which the observed features are counts. Specif-
ically, for the i-th observation, let Yi ∈ {0, 1} be the class label, and Xi ∈ N be the count
features.

We assume that the Yi are i.i.d. Bernoulli random variables with parameter θ. We also assume
that the Xi are i.i.d. random variables with the following distributionXi ∼ Poisson(λ1) if Yi = 1

Xi ∼ Poisson(λ0) if Yi = 0.

Recall if Z is a Poisson distribution of parameter λ, its probability mass function is given by

P(Z = k) =
exp{−λ}λk

k!
.

We hope to learn (θ, λ0, λ1) using maximum likelihood estimation as follows:

(θ̂, λ̂0, λ̂1) = argmax
θ,λ0,λ1

L(θ, λ0, λ1),

where L(θ, λ0, λ1) =
∑n

i=1 log P(Yi, Xi; θ, λ0, λ1) is the log-likelihood of the data. Here,
P(Yi, Xi; θ, λ0, λ1) is the joint probability of observing Yi and Xi.

(a) (3 points) Show that log-likelihood L(θ, λ0, λ1) can be written, up to a constant, as

n∑
i=1

Yi
[
Xi log λ1 − λ1 + log θ

]
+ (1 − Yi)

[
Xi log λ0 − λ0 + log(1 − θ)

]
Solution: We know that P(Xi | Yi = k) follows a Poisson distribution. For any k ∈ {0, 1}

P(Xi | Yi = k) =
exp{−λk}λ

Xi
k

Xi!
.

Similarly, we also know that P(Yi) follows a Bernoulli distribution

P(Yi) = θYi(1 − θ)1−Yi

We can then re-write the joint likelihood using these terms

L(θ, λ0, λ1) =
n∑

i=1

log P(Yi, Xi)

=

n∑
i=1

log P(Yi)P(Xi | Yi)
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=

n∑
i=1

log θYi(1 − θ)1−Yi

e−λ1λXi
1

Xi!


Yi
e−λ0λXi

0

Xi!


1−Yi

=

n∑
i=1

Yi
[
Xi log λ1 − λ1 + log θ

]
+ (1 − Yi)

[
Xi log λ0 − λ0 + log(1 − θ)

]
(b) (3 points) Is θ, λ0, λ1 7→ L(θ, λ0, λ1) concave? Justify your answer by computing∇2L(θ, λ0, λ1).

Assume the Yi are not all the same value.

Solution: We define fi(θ, λ0, λ1) to be our expression from (b). For any i, let
fi(θ, λ0, λ1) := Yi

[
Xi log λ1 − λ1

]
+(1−Yi)

[
Xi log λ0 − λ0

]
+Yi log θ+(1−Yi) log(1 − θ)−C

Consequently, the Hessian can be expressed as follows

∇2L(θ, λ0, λ1) =
n∑

i=1

∇2 fi(θ, λ0, λ1)

=


−
∑n

i=1 Yi/θ
2 + (1 − Yi)/(1 − θ)2 0 0

0 −
∑n

i=1(1 − Yi)Xi/λ
2
0 0

0 0 −
∑n

i=1 YiXi/λ
2
1


Yes, the function is concave. To test for concavity, we need to show that the Hessian
is negative semi-definite. Since the Hessian is a diagonal matrix, its eigenvalues are the
elements on the diagonal. Since Xi ≥ 0 and Yi ∈ {0, 1}, from our expression for the
Hessian we know all the eigenvalues are less than or equal to zero. Consequently, the
maxima of the log-likelihood are global and can be found using first-order conditions.

(c) (3 points) Compute the maximum likelihood estimates θ̂, λ̂0, λ̂1.

Solution: Taking the gradient with respect to θ gives the following condition

n∑
i=1

Yi

θ
−

1 − Yi

1 − θ
= 0.

We multiply both terms by θ(1 − θ) and rearrange the terms to get

θ̂ =

∑
i Yi

n

Using the same strategy, we obtain

λ̂1 =

∑
i YiXi∑

i Yi
and λ̂0 =

∑
i(1 − Yi)Xi∑

i(1 − Yi)
.

(d) (1 point) Is this model generative or discriminative? Why?

Solution: The model is generative, since it models the joint distribution of features and
labels, and not labels conditioned on features only like discriminative models.
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4 Matrix Decomposition on Ridge Regression

Consider the following common set-up: we have a dataset X ∈ Rn×d that contains n data points
and d features per data point, and a target dataset Y ∈ Rn of target outputs. We parameterize a
linear regression model f (x) = wT x, where w is a learned weight vector and x is a data point.

To train our model we use ridge regression, where we solve the following optimization prob-
lem for some fixed value of λ

wopt = argmin
w
∥Xw − Y∥2 + λ∥w∥2

The optimal solution to this problem is

wopt = (XT X + λI)−1XT Y

(a) (1 point) As λ approaches∞, what does wopt approach? Provide a brief justification.

Solution: The solution wopt approaches 0 as λ approaches ∞. This is because the second
term λ∥w∥22 dominates the expression, i.e., for any non-zero value of w, there exists a value
λ such that λ∥w∥22 > ∥Xw − Y∥22.

(b) (2 points) Suppose we know the SVD of X, where X = UΣVT . Recall that U ∈ Rn×n and
V ∈ Rd×d are orthonormal matrices, and Σ ∈ Rn×d is defined as diag(σ1, σ2, . . . , σd).
Consider the matrix (XT X + λI) that is computed to produce wopt. Write the spectral
decomposition of (XT X + λI).

Solution: Recall that for a symmetric matrix A, its spectral decomposition is written in
the form QDQT . We can write (XT X + λI) in terms of the components from the SVD of
X, which we can see simplifies to its spectral decomposition

XT X + λI = (VΣTΣVT + VλVT I) = VΣ′VT

where Σ′ = diag(σ2
1 + λ, σ

2
2 + λ, . . . , σ

2
d + λ).

(c) (3 points) When λ ≫ σ2
1, what matrix does (XT X + λI)−1 approach? You may find your

answer from part (b) useful.

Solution:
From part (b), we know that Σ′ = diag(σ2

1 + λ, σ
2
2 + λ, . . . , σ

2
d + λ).

In the case that λ ≫ σ2
1 ≥ σ

2
i , its inverse Σ′−1 approaches diag( 1

λ
, 1
λ
, . . . , 1

λ
) = 1

λ
I.

Therefore, the entire expression (XT X + λI)−1 approaches

(XT X + λI)−1 = (VΣ′VT )−1 = VΣ′−1VT ≈ V(
1
λ

I)VT =
1
λ

VVT =
1
λ

I

where we used the fact that V−1 = VT and VVT = I since V is an orthonormal matrix.

(d) (3 points) Now, we want to consider how the direction of wopt changes as we vary λ. To
do this, we define wnorm =

wopt

∥wopt∥
. Write an expression for wnorm in terms of X,Y, λ as λ

approaches∞. You may find your answer from part (c) useful.
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Solution: As λ approaches∞, λ ≫ σ2
1. Using part (c), in this case

wopt = (XT X + λI)−1XT Y ≈
1
λ

XT Y

Therefore,

wnorm ≈

1
λ
XT Y

∥ 1
λ
XT Y∥2

=
XT Y
∥XT Y∥2

.

The interpretation here is that, as λ increases, ridge regression increasingly assumes that
(XT X + λI)−1 ≈ 1

λ
I, or that the covariance between different features is zero, making the

direction of the solution wnorm depend more on the covariance between the features and
labels instead.
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5 Residuals vs Errors in Linear Regression

In linear regression, we hold the following hypotheses:

i. Y = Xw + e

ii. e ∼ N(0, σ2I)

where Y ∈ Rn, X ∈ Rn×d, w ∈ Rd, and e ∈ Rn. We call e the vector of “errors.”

The errors are a theoretical quantity that we don’t know as they depend on knowledge of the
true (often unobserved) value. What we can do is look at the residuals defined by ϵ = Y − Ŷ ,
the difference between our observed Y and our predicted Ŷ . In this problem, you will show
that the residuals do not share the same distribution as the errors.

(a) (3 points) From the above assumptions, we can derive that Y | X ∼ N(Xw, σ2I). You
may use this fact without proof.
Show that the MLE of w (keeping σ fixed) is the same as the minimizer of the sum of
squared residuals. Precisely, demonstrate the following:

argmax
w

L(w; Y | X) = argmin
w
∥Y − Xw∥22.

Solution:

argmax
w

L(w; Y | X) = argmax
w

n∏
i=1

pw(Yi | Xi)

= argmax
w

n∑
i=1

log pw(Yi | Xi)

= argmax
w

n∑
i=1

− (Yi − (Xw)i)2

2σ2 − log
(
σ
√

2π
)

= argmin
w

n∑
i=1

(Yi − (Xw)i)2

= argmin
w
∥Y − Xw∥22

(b) (3 points) Suppose we minimize the above loss function (sum of squared residuals) and
attain our optimal weight vector w∗. Prove that, when our data matrix contains a bias
term (that is, one column of X is the vector with every entry being 1), then the sum of
residuals is 0. Precisely, prove that

n∑
i=1

ϵi =

n∑
i=1

(Yi − Ŷi) = 0,
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where ϵ is our vector of residuals defined as Y − Ŷ , and Ŷ = Xw∗. You do not need to
prove convexity of ∥Y − Xw∥22.
Hint: It may be helpful to rewrite Yi − Ŷi as Yi − (X′w′)i − w0, where X′ is the data matrix
with the bias column removed, w′ is the weight vector with the bias weight removed, and
w0 is the bias weight.

Solution: Since the sum of squared residuals is differentiable, convex, and we are opti-
mizing over an open set, we know that the first-order conditions must hold at the optimum
w∗, so ∇w∥Y − Xw∥22|w=w∗ = 0. Hence, ∂

∂w0
∥Y − Xw∥22|w=w∗ = 0. So we have

∂

∂w0
∥Y − Xw∥22|w=w∗ =

∂

∂w0

n∑
i=0

(Yi − (X′w′)i − w0)2

=

n∑
i=0

−2(Yi − (X′w′)i − w0) = 0

=

n∑
i=0

(Yi − (Xw)i) = 0

=⇒

n∑
i=0

(Yi − Ŷi) =
n∑

i=0

ϵi = 0

An alternate solution using orthogonality is also valid. Since OLS gives us a projection
onto the range of X, the residuals must be orthogonal to each column of X. This includes
the column of all ones. Hence, 1 · ϵ = 0 =⇒

∑
i ϵi = 0.

(c) (3 points) Using the result of the previous part, prove that the residuals ϵ do not share the
same distribution as the errors e. Precisely, prove that

ϵ / N(0, σ2I).

Hint: A multivariate Gaussian with a diagonal covariance matrix has (mutually) indepen-
dent components. You may use this fact without proof.

Solution: Using the hint, we note that our assumption indicates that the components of
ϵ should be independent, but, in the previous part, we showed that the sum of residuals
(components of epsilon) sum to 0. This indicates that the value of ϵi is completely de-
termined by the values of all ϵ j, j , i since ϵi = −

∑
j,i ϵ j. So, under the assumption of

independence we should have p(ϵi | (ϵ j)i, j) = p(ϵi), which is our normal PDF centered
at 0 with variance σ2, but from the result in part (b), we find ϵi | (ϵ j)i, j is completely
determined with mean −

∑
j,i ϵ j and zero variance.
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6 Computational Graph Analysis

You are building a small neural network which takes in a vector x ∈ Rd and outputs another
vector y ∈ Rd. The computational graph of your network looks like this

x

wT x σ(z1)

Ax f (z2)

Bx f (z3)

z4z5 + (1 − z4)z6 y

z1

z4

z2 z5

z3

z6

where w ∈ Rd, A, B ∈ Rd×d are the parameters of your layers, σ is the sigmoid function, and
f : Rd → Rd is some activation function.

(a) Suppose f (x) = x is the identity function. Compute the following derivatives in terms of
the variables defined in the computational graph.

i. (1.5 points) ∂y/∂z1

Solution:
∂y
∂z1
=
∂y
∂z4

∂z4

∂z1
= (z5 − z6)σ(z1)(1 − σ(z1))

= σ(z1)(1 − σ(z1))(z5 − z6).

ii. (1 point) ∂y/∂z2

Solution:
∂y
∂z2
=
∂y
∂z5

∂z5

∂z2
= z4I

= z4I.

iii. (1 point) ∂y/∂A∗ j, where A∗ j is the j-th column of A
Solution:

z2 = Ax =
d∑

k=1

A∗kxk
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∂z2

∂A∗ j
= Ixi = xiI

∂y
∂A∗ j

=
∂y
∂z2

∂z2

∂A∗ j
= z4xiI.

iv. (1.5 points) ∂y/∂x
Solution:

∂y
∂x
=
∂y
∂z1

∂z1

∂x
+
∂y
∂z2

∂z2

∂x
+
∂y
∂z3

∂z3

∂x
= σ(z1)(1 − σ(z1))(z5 − z6)wT + z4A − z4B.

(b) (2 points) Suppose f (x) = ReLU(x). Briefly identify when and how each term of ∂y/∂x
would change from your answer in part (a).

Solution:
When z2 = (Ax)i < 0, i-th row of the z4A term will be zeroed out. This is because
previously for the identity activation (∂z5/∂z2) = I, but for ReLU (∂z5/∂z2) = diag(1[z2 >

0]), where 1[z2 > 0] is an indicator vector containing 1 where z2 > 0 and 0 elsewhere.
The same logic holds when z3 = (Bx)i < 0, and the i-th row of the −z4B term will be
zeroed out.
Solutions which describe how the derivative of ReLU becomes 0 when the input is less
than 0 will receive partial credit. Solutions must identify the terms which change to
receive full credit.
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7 Reverse-Engineering CNN Filters

You have an image and the outputs from two different convolutional filters, and you want to
reverse-engineer what filters were applied. You know that the filters are 3x3 with no bias term,
applied with no padding and a stride of 1, followed by a ReLU activation. The image and the
two outputs are normalized such that all values are ∈ [0, 1], where 0 is black and 1 is white.

Input Image Filter 1 Output Filter 2 Output

(a) (3 points) Fill in weights for each filter. All weights are a value in the set {−1, 0, 1}. Some
values have already been filled in for you.

Filter 1



1

0

−1


Filter 2



1

0

−1


Solution: Filter 1 is


1 1 1
0 0 0
−1 −1 −1

 and Filter 2 is


1 0 −1
1 0 −1
1 0 −1

.
(b) (1 point) Qualitatively, what types of features are being identified by each filter?

Solution: Filter 1 detects horizontal edges, and Filter 2 detects vertical edges.
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8 Gradient Descent for Linear Regression (CS289A Only)

Only complete this problem if you are enrolled in CS289A.
Do not complete this problem if you are enrolled in CS189.

Suppose we have a dataset of n samples D = {(xi, yi)}ni=1 where xi ∈ R
d and yi ∈ R. We can

stack the data into an n × d design matrix X and the labels into a vector y ∈ Rn. Recall that the
objective of the ordinary least squares problem is to find a weight vector w ∈ Rd that minimizes
the squared error J(w) = ∥Xw − y∥22. You may use without proof that J(w) is convex.

(a) (2 points) Show that any w ∈ Rd that satisfies the normal equation X⊤Xw = X⊤y will
be a solution to the OLS problem. When does a unique solution exist, and what is that
solution?

Solution: Note that J(w) = w⊤X⊤Xw−2w⊤X⊤y+y⊤y. Since J(w) is convex, we minimize
it by setting its gradient to 0:

∇wJ(w) = 0 =⇒ 2X⊤Xw − 2X⊤y = 0 =⇒ X⊤Xw = X⊤y

When X is full-rank, that is X⊤X is full rank, it follows that X⊤X will be invertible. Then,
the normal equation will have a unique solution given by w = (X⊤X)−1X⊤y.

(b) (2 points) In Big-O notation, what’s the computational cost of finding a solution to the
normal equation X⊤Xw = X⊤y? We will measure the cost in FLOPs (floating point op-
erations), i.e., the total number of additions, divisions, subtractions and multiplications
between two scalar numbers required to perform a computation.
Hint: Solving a linear system, represented by an m×m matrix, using Gaussian elimination
takes O(m3) FLOPs.

Solution: The computational complexity of finding this solution can be broken down into
several parts:

• Computing X⊤X will take O(nd2) FLOPs.
• Computing X⊤y will take O(nd) FLOPs.
• Performing Gaussian elimination to solve X⊤Xw = X⊤y will take O(d3) FLOPs.

Thus, the overall cost is O(d3 + nd2) FLOPs.

(c) (1 point) We learned about an iterative algorithm called gradient descent in lecture for
training logistic regression models and neural networks. However, gradient descent is a
very general algorithm that can be applied to many optimization problems, including least
squares. Write down the gradient descent update for w. Denote the learning rate by η.

Solution: We already have the gradient from the first part. Thus, the gradient descent
update will be given by

w← w − 2ηX⊤(Xw − y)
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(d) (2 points) In Big-O notation, what is the computational cost of performing gradient de-
scent for L iterations? Once again, we will measure the cost in FLOPs. Different se-
quences of computations will yield different costs. Pick the lowest cost.

Solution: It takes O(nd) FLOPs to compute Xw−y, and O(nd) further FLOPs to compute
2ηX⊤(Xw − y). Once the gradient is computed, the actual parameter update only takes
O(d) FLOPs. Thus, the computational cost of a single gradient descent update is O(nd)
FLOPs. The cost of running gradient descent for L iterations is, then, O(Lnd) FLOPs.

(e) (1 point) For an appropriately chosen learning rate, gradient descent will converge as
L→ ∞. However, we can only run a finite number of gradient descent iterations on a real
computer so this solution ends up being an approximate minimizer of the OLS objective,
unlike the solution returned by the normal equation, which will be an exact minimizer.
Regardless, it is still used as one of the main methods for solving OLS in practice. In what
situations might the gradient descent approach be preferable over attempting to solve the
normal equation directly?

Solution: Suppose d ≫ n, i.e., the number of features far exceeds the number of sam-
ples. In such cases, the O(d3) complexity of attempting to solve the normal equation will
dominate everything else and using gradient descent to get an approximate solution will
be far more efficient (and sometimes, the only way to get any kind of solution).

(f) (2 points) Let Jλ(w) = ∥Xw−y∥22+λ∥w∥
2
2, for λ > 0, be the objective function for ordinary

least squares with an l2-penalty, i.e., ridge regression.
Suppose we split the dataset into a training and validation split, and run stochastic gradient
descent (SGD), using only the training set, for 1000 iterations to optimize J(w) versus
Jλ(w), for some λ > 0. We also plot the root mean squared error (RMSE) of the parameter
vector w(t) at iteration t for each t = 0, . . . , 1000, on the entire training and validation
splits, for each experiment. The root mean squared error is defined as

RMSE(X, y,w) =

√√
1
m

m∑
i=1

(x⊤i w − yi)2

for X ∈ Rm×d and y ∈ Rm, where (X, y) is either the train or validation split with m samples.
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We have plotted the training and validation RMSE curves from running SGD to minimize
J(w) and Jλ(w), but we don’t know which plot corresponds to which objective! Based on
just the figure above, identify this correspondence and briefly justify your reasoning (1-2
sentences is enough).

Solution: Plot 1 corresponds to J(w) and plot 2 corresponds to Jλ(w).
Note that the l2-penalty term in the ridge regression objective has a regularizing effect
on the model, and we trade off a lower training RMSE for a lower validation RMSE,
i.e., better generalization. This can also be seen when you compare the gaps between the
training and validation curves in each plot: the gap in the second plot is smaller, which
indicates that the l2-regularized model generalizes better to unseen data.
We would intuitively also expect the training RMSE for J(w) to be lower than that of
Jλ(w) since [RMSE(X, y,w)]2 is just J(w) scaled down by a scalar factor. In other words,
SGD is directly optimizing the RMSE in the case of J(w), but its minimizing a slightly
different objective in the case of Jλ(w).
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You may use this page to show extra work. Clearly mark your work with the problem number
here, and also mention in the problem-specific box that your work is continued here.
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