
CS 189
Summer 2019

Introduction to
Machine Learning Midterm

• Please do not open the exam before you are instructed to do so.

• The exam is closed book, closed notes except your two-page cheat sheet.

• Electronic devices are forbidden on your person, including cell phones, iPods, headphones, and laptops. Turn your
cell phone off and leave all electronics at the front of the room, or risk getting a zero on the exam.

• You have 3 hours.

• Please write your initials at the top right of each page after this one (e.g., write “MK” if you are Marc Khoury). Finish
this by the end of your 3 hours.

• Mark your answers on the exam itself in the space provided. Do not attach any extra sheets.

• The total number of points is 150. There are 26 multiple choice questions worth 3 points each, and 5 written questions
worth a total of 72 points.

• For multiple answer questions, fill in the bubbles for ALL correct choices: there may be more than one correct choice,
but there is always at least one correct choice. NO partial credit on multiple answer questions: the set of all correct
answers must be checked.

First name

Last name

SID

First and last name of student to your left

First and last name of student to your right
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Q1. [60 pts] Multiple Answer
Fill in the bubbles for ALL correct choices: there may be more than one correct choice, but there is always at least one correct
choice. NO partial credit: the set of all correct answers must be checked.

(a) [3 pts] Let X ∼ Bernoulli( 1
1+exp θ ) for some θ ∈ R. What is the MLE estimator of θ?

© X

© 1

© 0

© Does not exist.

(b) [3 pts] Let Y ∼ N(Xθ, In) for some unknown θ ∈ Rd and some known X ∈ Rn×d that has full column rank and d < n.
What is the MLE estimator of θ?

© (X>X)−1X>Y

© X>(XX>)−1Y

© Y + Z ∀Z ∈ Null(X)

© Does not exist.

(c) [3 pts] Let f (x) = −
∑n

i=1 xi log xi. For some x such that
∑n

i=1 xi = 1 and xi > 0, the Hessian of f is:

© positive definite

© negative definite

© positive semidefinite

© negative semidefinite

© indefinite (neither positive semidefinite nor nega-
tive semidefinite)

© invertible

© nonexistent

© None of the above.

(d) [3 pts] Which of the following statements about optimization algorithms are correct?

© Newton’s method always requires fewer iterations than gradient descent.

© Stochastic gradient descent always requires fewer iterations than gradient descent.

© Stochastic gradient descent, even with small step size, sometimes increases the loss in some iteration for convex
problems.

© Gradient descent, regardless the step size, decreases the loss in every iteration for convex problems.

(e) [3 pts] Assume we run the hard-margin SVM algorithm on 100 d-dimensional points from 2 different classes. The
algorithm outputs a solution. After which transformation to the training data would the algorithm still output a solution?

© Centering the data points

© Transforming each data point from x to Ax for
some matrix A ∈ Rdxd

© Dividing all entries of each data point by some
negative constant c

© Adding an additional feature

(f) [3 pts] Which of the following holds true when running an SVM algorithm?

© Increasing or decreasing α value only allows the
decision boundary to translate.

© Given n-dimensional points, the SVM algorithm
finds a hyperplane passing through the origin in the

(n + 1)-dimensional space that separates the points by
their class.

© Decision boundary rotates if we change the con-
straint to wT x + α ≥ 3.
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© The set of weights that fulfill the constraints of the SVM algorithm is convex.

(g) [3 pts] Consider the set {x ∈ Rd : (x − µ)>Σ(x − µ) = 1} given some vector µ ∈ Rd and matrix Σ ∈ Rdxd. Which of the
following are true?

© If Σ is the identity matrix scaled by some constant
c, then the set is isotropic.

© Increasing the eigenvalues of Σ increases the radii
of the ellipsoid.

© Increasing the eigenvalues of Σ decreases the radii
of the ellipsoid.

© A singular Σ produces an ellipsoid with an infinite
radius.

(h) [3 pts] Consider the linear regression problem with full rank design matrix, which of the following regularization in
general encourage more sparsity than non-regularized objective:

© L0 regularization (number of the non-zero coordi-
nates)

© L1 regularization

© L2 (Tikhonov) regularization

© L3 regularization

© L4 regularization

© L∞ regularization (the maximum absolute value
across all coordinates)

(i) [3 pts] Which of the following statements are correct?

© In ridge regression, the regularization parameter λ is usually set as 0.1.

© SVM in general does not enforce sparsity over the parameters w and α.

© In binary linear classification, the support vectors of SVM might contain samples from only one class even if
training data has both classes.

© In binary linear classification, suppose 1{w>x +α ≥ 0} is one maximum margin linear classifier, then the margin
only depends on w but not α.

(j) [3 pts] In binary classification (+1 and −1), suppose our data is linearly separable and the data matrix has full column
rank (n > d). Which of the following formulation can guarantee to find a linear classifier that achieves 0 training error?
Note that in the regression options, the prediction rule would still be 1{w>x + α ≥ 0}.

© Logistic regression

© SVM

© Lasso

© Linear regression with square loss

© Perceptron

© None of the above

(k) [3 pts] Analogous to positive semi-definiteness, an n × n real symmetric matrix B is called negative semi-definite if
x>Bx ≤ 0 for all vectors x ∈ Rn. Which of the following conditions guarantee B is negative semi-definite?

© B has all negative entries

© The largest eigenvalue of B is ≤ 0

© B = A−1, where A is positive semi-definite

© B = −AT A for some matrix A

(l) [3 pts] Consider two classes whose class conditionals are the scalar normal distributions N(µ1, σ
2) and N(µ2, σ

2) re-
spectively, where µ1 < µ2. Given some non-zero priors π1 and π2, recall the Bayes’ optimal decision boundary will be a
single point, x∗. Which of the following changes, holding everything else constant, would cause x∗ to increase?
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© Decreasing µ1

© Increasing σ

© Increasing µ2

© Increasing π1 while decreasing π2

(m) [3 pts] Let Σ be a positive definite matrix with eigenvalues λ1, . . . , λd. Consider the quadratic function g(x) = x>(cΣ−2)x,
for some constant c > 0. What are the lengths of the radii of the ellipsoid at which g(x) = 1?

© c−1/2 · λi

© c1/2 · λi

© c · λ−1
i

© c1/2 · λ−1/2
i

(n) [3 pts] Let X ∼ N(µ,Σ) be a multivariate normal random variable. Which the the following statements of about linear
functions of X are always true, where A is some square matrix and b a vector?

© Var(AX) = A2Σ

© AX + b is also multivariate normal

© AX is isotropic if A = Σ−1

© E[AX + b] = Aµ + b

(o) [3 pts] You have trained four binary classifiers A, B,C, and D, observing the following ROC curves when evaluating
them:

We say that a classifier G strictly dominates a classifier H if G’s true positive rate is always greater than H’s true positive rate
for all possible false positive rates in (0, 1).

Mark all of the below relations between (A, B,C, and D) which are true under this definition.

© C strictly dominates D

© D strictly dominates C

© B strictly dominates A

© A strictly dominates B

© B strictly dominates C

© D strictly dominates A

(p) [3 pts] We are doing binary classification on classes {1, 2}. We have a single dataset of size N of which a fraction α of
the elements are in class 1. To construct a test set, we randomly choose a fraction β of the dataset to put in the test set,
keeping the remaining elements in a training set.

We would like to avoid the situation where in the training or test sets, either class appears less than 0.1N times. In which
of the following situations does this occur, in expectation?
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© α = 50%, β = 50%

© α = 20%, β = 70%

© α = 40%, β = 60%

© α = 70%, β = 20%

© α = 30%, β = 60%

© α = 60%, β = 80%

(q) [3 pts] Assume that for a k-class problem, all classes have the same prior probability, i.e. π = [ 1
k , . . . ,

1
k ]. You build two

different models:

• (Model A) You train QDA once for all k classes, and to classify a data point you return the class with the highest
posterior probability.

• (Model B) You train QDA pairwise
(

k
2

)
times, restricting the training data each time to only the data points from

two of the k classes. To classify a test point, you return the class that has the higher posterior probability most often
from the

(
k
2

)
independent models.

Mark all of the following which are true in general, in the comparison of bias and variance between models A and B:

© B has higher bias than A

© B has the same bias as A

© B has lower bias as A

© B has higher variance than A

© B has the same variance as A

© B has lower variance as A

(r) [3 pts] You observe the following train and test error as a function of model complexity p for three different models:

Mark the values of p and models where the test and train error indicate overfitting.

© model A at p = 10

© model B at p = 10

© model C at p = 10

© model A at p = 20

© model B at p = 20

© model C at p = 20

© model A at p = 30

© model B at p = 30

© model C at p = 30

(s) [3 pts] Which models, if any, appear to be underfit for all settings of p?

© A © B © C

(t) [3 pts] Consider the minimum possible bias for each model over all settings of p for 0 ≤ p ≤ 30. Which of the following
are true in comparing the minimum bias between the three models?
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© Model A has higher minimum bias than B

© Model A has the same minimum bias as B

© Model A has lower minimum bias than C

© Model B has higher minimum bias than C

© Model B has the same minimum bias as C

© Model B has lower minimum bias than C
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Q2. [10 pts] Comparing Classification Algorithms
Find the decision boundary given by the following algorithms. Provide a range of values if the algorithm allows for multiple
feasible decision boundaries. If there exists no feasible decision boundary, state ”None.”

(a) [1 pt] Perceptron: X1 =

(b) [2 pts] Hard-Margin SVM: X1 =

(c) [2 pts] Linear Discriminant Analysis: X1 =

(d) [1 pt] Perceptron: X1 =

(e) [2 pts] Hard-Margin SVM: X1 =

(f) [2 pts] Linear Discriminant Analysis: X1 =
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Q3. [15 pts] Binary Image Classification
A binary image is a digital image where each pixel has only possibles values: zero (white) or one (black). A binary image,
which consists of a grid of pixels, can therefore naturally be represented as a vector with entries in {0, 1}.

0
1
0
1image

vector

∈ {0,1}d

d × d

In this problem, we consider a classification scheme based on a simple generative model. Let X be a random binary image,
represented as a d-dimensional binary vector, drawn from one of two classes: P or Q. Assume every pixel Xi is an independent
Bernoulli random variable with parameter pi and qi when drawn from classes P and Q respectively.

Xi | Y = P ∼ Bernoulli(pi) independently for all 1 ≤ i ≤ d

Xi | Y = Q ∼ Bernoulli(qi) independently for all 1 ≤ i ≤ d

(a) [1 pt] Of course, when working with real data, the true parameters pi and qi will be unknown and therefore must be
estimated from the data. Given the following 5 2-dimensional training points from class P, find the maximum likelihood
estimates of p1 and p2.

[
0
0

]
,

[
0
1

]
,

[
0
1

]
,

[
1
1

]
,

[
0
1

]

p̂MLE
1 = p̂MLE

2 =

Important. The other parameters and priors could similarly be estimated. For the remainder of the problem, however, we focus
on the ideal case, where the true values of pi and qi, along with priors πp and πq, are known.

(b) [1 pt] Fill in the blanks in the statement below.

To minimize risk with the (symmetric) 0-1 loss function, we should pick the class with the
probability, which gives the Bayes’ optimal classifier.
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(c) [4 pts] Given an image x ∈ {0, 1}d, compute the probabilities Pr(X = x|Y = P) and Pr(X = x|Y = Q) in terms of the priors,
image pixels and/or class parameters. Your answer must be a single expression for each probability.

(d) [2 pts] In terms of the probabilities above, write an equation which holds if and only if x is at the decision boundary of
the Bayes’ optimal classifier, assuming a (symmetric) 0-1 loss function. No simplification is necessary for full credit.

(e) [7 pts] It turns out that the decision boundary derived above is actually linear in the features of x, so for some vectors w
and scalar b, it can be succinctly expressed as:

{x ∈ {0, 1}d : w>x + b = 0}

Find the entries of the vector w and value of b in terms of class priors and parameters, using them to fill in the blanks on
the line below.

wi = b =
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Q4. [15 pts] Gaussian Mean Estimation
Suppose Y ∈ Rd is a random variable distributed asN(θ, Id×d) for some unknown θ ∈ Rd. We observe a sample y ∈ Rd of Y and
want to estimate θ.

(a) [2 pts] What is the maximum likelihood estimator(MLE) of θ? Write down the answer in the box.

Now we are going to use ridge regression to solve this problem. Namely, solve minθ
{
‖y − θ‖2 + 1

2λ‖θ‖
2
}

to get an estimate of θ.

(b) [2 pts] What is the closed form of estimator θ̂(y) from ridge regression with regularization parameter λ? Write down the
answer in the box.

(c) [4 pts] Derive the population risk E‖Y − θ̂(y)‖2 for ridge regression estimator (expectation is taken with respect to all the
randomness including testing time Y and training sample y).

n
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(d) [3 pts] what is the population risk for the MLE estimator. Write down the answer in the box.

(e) [1 pt] Suppose we choose λ = d, find out the condition on θ such that the ridge regression estimator has a lower risk than
the MLE estimator.

(f) [2 pts] This implies that MLE estimator, although seems to be the most natural estimator, does not always achieve the
lowest risk. Briefly explain the reasons behind this fact.

(g) [1 pt] Based on the previous parts, write down one potential advantage of ridge regression over ordinary least square
regression (namely, why do we sometimes add the regularization term).
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Q5. [12 pts] Estimation of Linear Models
In all of the following parts, write your answer as the solution to a norm minimization problem, potentially with a regularization
term. You do not need to solve the optimization problem. Simplify any sums using matrix notation for full credit.
Hint: Recall that the MAP estimator maximizes P(θ|Y): θ̂ = arg max P(Y |θ)P(θ)/P(Y) = arg maxθ∈Rd P(Y |θ)P(θ). The differ-
ence between MAP and MLE is the inclusion of a prior distribution on θ in the objective function.

For the following problems assume you are given X ∈ Rn×d and y ∈ Rn as training data.

(a) [3 pts] Let y = Xθ + ε where ε ∼ N(0,Σ) for some positive definite, diagonal Σ. Write the MLE estimator of θ as the
solution to a weighted least squares problem, potentially with a regularization term.

θ̂ = arg minθ∈Rd

(b) [3 pts] Let y|θ ∼ N(Xθ,Σ) for some positive definite, diagonal Σ. Let θ ∼ N(0, λId) for some λ > 0 be the prior on
θ. Write the MAP estimator of θ as the solution to a weighted least squares minimization problem, potentially with a
regularization term.

θ̂ = arg minθ∈Rd

(c) [3 pts] Let y = Xθ+ ε where εi
i.i.d.
∼ Laplace(0, 1). Recall that the pdf for Laplace(µ, b) is p(x) = 1

2b exp (− 1
b |x − µ|). Write

down the MLE estimator of θ as the solution to a norm minimization optimization problem.

θ̂ = arg minθ∈Rd
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(d) [3 pts] Let y|θ ∼ N(Xθ,Σ) for some positive definite, diagonal Σ. Let θi
i.i.d.
∼ Laplace(0, λ) for some positive scalar

λ. Write the MAP estimator of θ as the solution to a weighted least squares minimization problem, potentially with a
regularization term.

θ̂ = arg minθ∈Rd
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Q6. [9 pts] Bias-Variance for Least Squares
For this problem, we would like to analyze the performance of linear regression on our given data (X, Ỹ), where X ∈ Rn×d and
Ỹ ∈ Rn.

The original Y perfectly fit a line from the original data, i.e. Y = Xβ. However, we do not know the original data, we only
know Ỹ = Y + ε, where ε ∼ N(0, In), i.e. we only know the ỹs that are distorted from the actual ys with mean-zero, independent
variance-one Gaussian noise.

Recall that via least squares, the predicted regression coefficients are β̃ = (XT X)−1XT Ỹ .

(a) [1 pt] For a test data point (z, y) ∈ (Rd,R), call the predicted value from our model f̃ (z). What is f̃ (z)?

(b) [1 pt] Note that for our test data point z, we do not observe the true value y ever, only ỹ = y + εy where εy ∼ N(0, 1). We
would like to calculate the expected squared-error E[(ỹ − f̃ (z))2]. Apply the Bias-Variance decomposition to decompose
this expected squared error into three pieces, you do not have to simplify further. Clearly label what the three pieces
correspond to.

(c) [2 pts] Derive the bias. Show your work.

(d) [3 pts] Show that the variance is zt(XT X)−1z.

(e) [2 pts] Argue why in this case the variance is always at least the bias, for any potential test data point z.
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Q7. [5 pts] Estimates of Variance
Assume that data points X1, . . . , Xn are sampled i.i.d from a normal distribution N(0, σ2). You know that the mean of this
distribution is 0, but you do not know the variance σ2.

Recall that if a variable X ∼ N(µ, σ2), its probability density function is:

fX(x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
(a) [3 pts] Write the expression for the log-likelihood lnP(X1, . . . , Xn | σ

2). Simplify as much as possible.

(b) [2 pts] Find the σ̂2 that maximizes this expression, i.e. the MLE.
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Q8. [6 pts] Train and Test Error
Assume a general setting for regression with arbitrary loss function L(y, ŷ) ≥ 0. We have devised a family of models rθ : Rd → R
parameterized by θ ∈ Θ.

Let {(x1, y1), . . . (xn, yn)} be a test set and {(x̃1, ỹ1), . . . (x̃m, ỹm)} be a training set, both sampled from the same joint distribution
(X,Y) ∈ (Rd,R). Then we have Rtr(θ) = 1

n
∑n

i=1 L(rθ(xi), yi) and R(m)
te (θ) = 1

m
∑m

i=1 L(rθ(x̃i), ỹi) as the train and test error
depending on the setting of θ, respectively.

We have found the optimal θ̂ = argminθ∈ΘRtr(θ), and would like to show that

E[Rtr(θ̂)] ≤ E[R(m)
te (θ̂)]

(a) [2 pts] Show that E[R(m)
te (θ̂)] is the same regardless of the size of the test set m.

(b) [2 pts] Due to the previous part, we can work with a test set that is the same size as the training set. Argue that

E[Rtr(θ̂)] = E[minθ∈ΘR(n)
te (θ)]

(c) [1 pt] Argue that E[minθ∈ΘR(n)
te (θ)] ≤ E[R(n)

te (θ̂)], completing the proof.

(d) [1 pt] True or False: For all training and test datasets,

Rtr(θ̂) ≤ Rte(θ̂)

© True © False
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