
CS 189/289A Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saeed Saremi HW2
Due 09/25/24 11:59 PM PT

• Homework 2 consists of both written and coding questions.

• We prefer that you typeset your answers using LATEX or other word processing software.
If you haven’t yet learned LATEX, one of the crown jewels of computer science, now is a
good time! Neatly handwritten and scanned solutions will also be accepted for the written
questions.

• In all of the questions, show your work, not just the final answer.

Deliverables:

1. Submit a PDF of your homework to the Gradescope assignment entitled “HW 2 Written”.
Please start each question on a new page. If there are graphs, include those graphs in the
correct sections. Do not just stick the graphs in the appendix. We need each solution to be
self-contained on pages of its own.

• Replicate all of your code in an appendix. Begin code for each coding question on
a fresh page. Do not put code from multiple questions in the same page. When you
upload this PDF on Gradescope, make sure that you assign the relevant pages of your
code from the appendix to correct questions.

2. Submit all the code needed to reproduce your results to the Gradescope assignment entitled
“HW 2 Code”. Yes, you must submit your code twice: in your PDF write-up following
the directions as described above so the readers can easily read it, and once in the format
described below for ease of reproducibility.

• You must set random seeds for all random utils to ensure reproducibility.

• Do NOT submit any data files that we provided.

• Please also include a short file named README listing your name, student ID, and
instructions on how to reproduce your results.

• Please take care that your code doesn’t take up inordinate amounts of time or memory.
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1 Multivariate Gaussians: A review
Multivariate Gaussian distributions crop up everywhere in machine learning, from priors on model
parameters to assumptions on noise distributions. Being able to manipulate multivariate Gaussians
also becomes important for analyzing correlations in data and preprocessing it for better regression
and classification. We want to make sure to first cover the MVG fundamentals here.

Note that the probability density function of a non-degenerate (i.e. the covariance matrix is positive
definite and, thus, invertible) multivariate Gaussian RV with mean vector, µ ∈ R2, and covariance
matrix, Σ ∈ R2×2, is:

f (z) =
1√

(2π)2|Σ|
exp

(
−

1
2

(z − µ)⊤Σ−1(z − µ)
)

(a) Consider a two dimensional, zero mean random variable Z =
[
Z1 Z2

]⊤
∈ R2. In order for the

random variable to be jointly Gaussian, a necessary and sufficient condition which we call the
first characterization is that

• Z1 and Z2 are each marginally Gaussian, and

• Z1|Z2 = z is Gaussian, and Z2|Z1 = z is Gaussian.

A second characterization of a jointly Gaussian zero mean RV Z ∈ R2 is that it can be written
as Z = AX, where X ∈ R2 is a collection of i.i.d. standard normal RVs and A ∈ R2×2 is a matrix.

Let X1 and X2 be i.i.d. standard normal RVs. Let U denote a binary random variable uniformly
that is equal to 1 with probability 1

2 and −1 with probability 1
2 , independent of everything else.

For each of the below subproblems, complete the following two steps: (1) Using one of the
characterizations given above, determine whether the RVs are jointly Gaussian. If using the
second characterization, clearly specify the A matrix. (2) Calculate the covariance matrix of Z
(regardless of whether the RVs are jointly Gaussian or not).

(i.) Z1 = X1 and Z2 = X2.

(ii.) Z1 = X1 and Z2 = X1 + 2X2. If using the first characterization, assume that you already
know (Z1|Z2 = z) is Gaussian.

(iii.) Z1 = X1 and Z2 = −X1.

(iv.) Z1 = X1 and Z2 = UX1.

(b) Show that two Gaussian random variables can be uncorrelated, but not independent (Hint:
use one of the examples in part (a)). On the other hand, show that two uncorrelated, jointly
Gaussian RVs are independent.

(c) With the setup in (a), let Z = VX, where V ∈ R2×2, and Z, X ∈ R2. What is the covariance
matrix ΣZ? If X is not a multivariate Gaussian but has the identity matrix I ∈ R2×2 as its
covariance matrix, is your computed ΣZ still the covariance of Z?
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(d) Given a jointly Gaussian zero mean RV Z = [Z1 Z2]⊤ ∈ R2 with covariance matrix ΣZ =Σ11 Σ12

Σ12 Σ22

, derive the conditional distribution of (Z1|Z2 = z).

Hint: The following identity may be usefula b
b c

−1

=

 1 0
−b

c 1

 (a − b2

c

)−1
0

0 1
c

 1 −b
c

0 1
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2 Projections and Linear Regression
We are given X ∈ Rn×d where n > d and rank(X) = d. We are also given a vector y ∈ Rn. Define
the orthogonal projection of y onto range(X) as Prange(X)(y).

Background on orthogonal projections For any finite-dimensional subspace W (here, range(X)) of
a vector space V (here, Rn), any vector v ∈ V can be decomposed as

v = w + u, w ∈ W, u ∈ W⊥,

where W⊥ is the orthogonal complement of W. Furthermore, this decomposition is unique: if
v = w′ + u′ where w′ ∈ W, u′ ∈ W⊥, then w′ = w and u′ = u. These two facts allow us to define
PW , the orthogonal projection operator onto W. Given a vector v with decomposition v = w + u,
we define

PW(v) = w.

It can also be shown using these two facts that PW is linear. For more information on orthogonal
projections, see https://gwthomas.github.io/docs/math4ml.pdf.

(a) Prove that Prange(X)(y) = argmin
w∈range(X)

∥y − w∥22.

(b) An orthogonal projection is a linear transformation. That is, Prange(X)(y) = Py for some projec-
tion matrix P.

Specifically, given 1 ≤ d ≤ n, a matrix P ∈ Rn×n is said to be a rank-d orthogonal projection
matrix if

• rank(P) = d

• P = PT

• P2 = P.

Prove that P is a rank-d projection matrix if and only if there exists a U ∈ Rn×d such that
P = UU⊤ and U⊤U = I.

Hint Use the eigendecomposition of P to prove the forward direction.

(c) The Singular Value Decomposition theorem states that we can write any matrix X as

X =
min{n,d}∑

i=1

σiuiv⊤i =
∑

i:σi>0

σiuiv⊤i

where σi ≥ 0, and {ui}
n
i=1 and {vi}

d
i=1 are orthonormal bases for Rn and Rd respectively. Some of

the singular values σi may equal 0, indicating that the associated left and right singular vectors
ui and vi do not contribute to the sum, but sometimes it is still convenient to include them in
the SVD so we have complete orthonormal bases for Rn and Rd to work with. Show that
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(i) {ui : σi > 0} is an orthonormal basis for the columnspace of X

(ii) Similarly, {vi : σi > 0} is an orthonormal basis for the row space of of X
Hint: consider X⊤.

(d) Let X ∈ Rn×d such that rank(X) = d. Prove that X(XT X)−1XT is a rank-d orthogonal projection
matrix.

Hint: Consider the SVD decomposition of X.

(e) Prove that X(XT X)−1XT is a projection onto range(X).

(f) Show that w∗ = (XT X)−1XT y is the solution to the optimization problem

argmin
w

∥∥∥y − Xw
∥∥∥2

2

using only facts proved in this problem.
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3 Some MLEs
For this question, assume you observe n (data point, label) pairs (xi, yi)n

i=1, with xi ∈ R
d and yi ∈ R

for all i = 1, . . . , n. We denote X as the data matrix containing all the data points and y as the label
vector containing all the labels:

X =


x⊤1
...

x⊤n

 ∈ Rn×d, y =


y1
...

yn

 ∈ Rn.

(a) Ignoring y for now, suppose we model the data points as coming from a d-dimensional Gaus-
sian with diagonal covariance:

∀i = 1, . . . , n, xi
i.i.d.
∼ N(µ,Σ); Σ =


σ2

1 . . . 0
...
. . .

...

0 . . . σ2
d

 .
If we consider µ ∈ Rd and (σ2

1, . . . , σ
2
d), where each σ2

i > 0, to be unknown, the parameter
space here is 2d-dimensional. When we refer to Σ as a parameter, we are referring to the
d-tuple (σ2

1, . . . , σ
2
d), but inside a linear algebraic expression, Σ denotes the diagonal matrix

diag(σ2
1, . . . , σ

2
d).

Solve the following problems:

(i) Prove that log-likelihood ℓ(µ,Σ) = log p(X | µ,Σ) is equal to

−
n
2

d log(2π) −
d∑

j=1

log

 1
σ2

j


 − 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ).

(ii) Find the MLE of µ assuming Σ is known.

(iii) Find the MLE of Σ assuming µ is known.
Hint: you can re-parameterize σ2

j by defining v j =
1
σ2

j

(iv) Find the joint MLE of (µ,Σ) in terms of the maximum likelihood estimates computed
above.

(b) Suppose that we have a training set {(xi, yi) | i = 1 . . . n} of n independent examples but in
which the residual terms had different variances. That is, we assume

yi ∼ N(wT xi, σ
2
i ).

Show that the MLE estimate of w can be found by solving the following optimization problem

wMLE = argmin
w

∥∥∥A(Xw − y)
∥∥∥2

2
.

Clearly state what the matrix A equals.
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(c) Consider the Categorical(θ1, θ2, . . . , θk) distribution. Recall, for categorical distributions, there
are two constraints on θk:

• θk ≥ 0 for all k

•
∑K

k=1 θk = 1

The distribution describes a random process that selects one of the K possible categories, with
category k being chosen with probability θk.

Ignoring the data points X, suppose that for all i from 1 to n, we sample yi from a categorical
distribution:

yi
i.i.d.
∼ Categorical(θ1, . . . , θK).

Compute the MLE of θ = (θ1, . . . , θK). Use the fact that the KL divergence is nonnegative:

KL(π ∥ θ) =
∑
ω∈Ω

π(ω) log
(
π(ω)
θ(ω)

)
≥ 0.

(d) Again consider X fixed. This time, we suppose that each yi is binary-valued (0 or 1). We
choose to model y as

yi
ind.
∼ Ber(s(x⊤i w)) ∀i = 1, . . . , n,

where s(z) = 1
1+e−z is the sigmoid function and Ber(p) denotes the Bernoulli distribution which

takes value 1 with probability p and 0 with probability 1 − p.

(i) Write down the log-likelihood ℓ(w) = log p(y |w) and show that finding the MLE of w is
equivalent to minimizing the cross entropy between Ber(yi) and Ber(s(x⊤i w)) for each i:

min
w∈Rd

n∑
i=1

H(Ber(yi),Ber(s(x⊤i w))). (1)

Definition of cross entropy: given two discrete probability distributions π : Ω → [0, 1]
and θ : Ω→ [0, 1] on some outcome space Ω, we define the cross entropy between π and
θ as

H(π, θ) =
∑
ω∈Ω

−π(ω) log θ(ω).

(ii) Show that (1) (and therefore finding the MLE) is equivalent to the following problem:

min
w∈Rd

n∑
i=1

log
(
1 + exp

(
−zix⊤i w

))
(2)

where zi = 1 if yi = 1 and zi = −1 if yi = 0.
Note: both (1) and (2) are referred to as logistic regression.

(iii) Let J(w) = log
(
1 + exp

(
−zx⊤w

))
where, again, z = 1 if y = 1 and z = −1 if y = 0 (we are

only considering a single (x, y) pair in this subpart). Prove the following:
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i. J is not strictly convex.
Hint: A necessary condition for a twice-differentiable function to be strictly convex
is that its Hessian is positive definite.

ii. The gradient descent update rule for minimizing J(w) with learning rate ϵ is

w′ = w − ϵ
(

1
1 + e−xT w

− y
)

x
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4 Geometry of Ridge Regression
You recently learned ridge regression and how it differs from ordinary least squares. In this ques-
tion we will explore the properties of ridge regression in more depth. Recall that the ridge regres-
sion problem is given by the following optimization problem:

min
w
∥y − Xw∥22 + ν∥w∥

2
2. (3)

The solution to ridge regression is given by

ŵr = (X⊤X + νI)−1X⊤y. (4)

(a) One reason why we might want to have small weights w has to do with the sensitivity of the
predictor to its input. Let x be a d-dimensional list of features corresponding to a new test
point. Our predictor is w⊤x. What is an upper bound on how much our prediction could
change if we added noise ϵ ∈ Rd to a test point’s features x, in terms of ∥w∥2 and ∥ϵ∥2?

Hint: Use the Cauchy-Schwarz inequality.

(b) Note that in computing ŵr, we are trying to invert the matrix X⊤X + νI instead of the matrix
X⊤X. If X⊤X has eigenvalues σ2

1, . . . , σ
2
d, what are the eigenvalues of (X⊤X+νI)−1? Comment

on why adding the regularizer term νI can improve the inversion operation numerically.

(c) Let the number of parameters d = 4 and the number of datapoints n = 6, and let the eigenvalues
of X⊤X be given by 500, 10, 1, and 0.001. We must now choose between two regularization
parameters ν1 = 50 and ν2 = 0.1. Which do you think is a better choice for this problem and
why?

(d) Another advantage of ridge regression can be seen for under-determined systems. Say we
have the data drawn from a d = 5 parameter model, but only have n = 4 training samples of
it, i.e. X ∈ R4×5. Now this is clearly an underdetermined system, since n < d. Show that
ridge regression with ν > 0 results in a unique solution, whereas ordinary least squares has an
infinite number of solutions.

Hint: To make this point, it may be helpful to consider w = w0 + w∗ where w0 is in the null
space of X and w∗ is a solution.

(e) What will the solution to ridge regression (4) converge to if you take the limit ν → 0? Your
answer should be a simple expression in terms of U,Σ,V, y, and ν where X = UΣVT is the
SVD of X.

(f) Tikhonov regularization is a general term for ridge regression, where the implicit constraint
set takes the form of an ellipsoid instead of a ball. In other words, we solve the optimization
problem

w = arg min
w
∥y − Xw∥22 + ν∥Γw∥22

for some full rank matrix Γ ∈ Rd×d. Derive a closed form solution for w.
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5 Robotic Learning of Controls from Demonstrations and Images
Huey, a home robot, is learning to retrieve objects from a cupboard, as shown in Fig. 1. The goal
is to push obstacle objects out of the way to expose a goal object. Huey’s robot trainer, Anne,
provides demonstrations via tele-operation. When tele-operating the robot, Anne can look at the
images captured by the robot and provide controls to Huey remotely.

During a demonstration, Huey records the RGB images of the scene for each of the n timesteps,
x1, ..., xn, where xi ∈ R

30×30×3 and the controls for his body for each of the n timesteps, u1, . . . , un,
where ui ∈ R

3. The controls correspond to making small changes in the 3D pose (i.e. translation
and rotation) of his body. Examples of the data are shown in the figure.

Under an assumption (sometimes called the Markovian assumption) that all that matters for the
current control is the current image, Huey can try to learn a linear policy π (where π ∈ R2700×3)
which linearly maps image states to controls (i.e. π⊤x = u). We will now explore how Huey can
recover this policy using linear regression.

Note the dimensions in this problem! Previously, you saw linear regression in problems in which
the learned weight w∗ was a vector and the predicted value y was a scalar. Here, we are predicting
3D controls. This means that the learned policy is a matrix. In essence, we are performing 3
regressions at the same time, one for each element of the predicted control u.

Please stick to numpy (and numpy.linalg) only for performing any computations in this assign-
ment. We will ask that you edit the file robotic ridge code.py directly, instead of working in a
Python notebook, and submit it to the Gradescope autograder after you are finished. Please don’t
rename the file, or change any of the function signatures!

A) Robot Performing Task B) Dataset 

Figure 1: A) Huey trying to retrieve a mustard bottle. An example RGB image of the workspace taken from
his head mounted camera is shown in the orange box. The angle of the view gives Huey an eye-in-hand
perspective of the cupboard he is reaching into. B) A scatter plot of the 3D control vectors, or u labels.
Notice that each coordinate of the label lies within the range of [−1, 1] for the change in position. Example
images, or states x, are shown for some of the corresponding control points. The correspondence is indicated
by the blue lines.
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(a) To get familiar with the structure of the data, please visualize the 0th, 10th and 20th images
in the training dataset. Also find their corresponding control vectors.
Note: the training and testing images are currently stored as float32 numpy arrays, with pixel
values in the range [0.0, 255.0]. You may have to convert to these images to the np.uint8 format
to visualize them.

(b) Load the n training examples from x train.p and compose the matrix X, where X ∈ Rn×2700.
Note that you will need to flatten the images and reduce them to a single vector. The flattened
image vector will be denoted by x̄ (where x̄ ∈ R2700×1). Next, load the n examples from
y train.p and compose the matrix U, where U ∈ Rn×3. Try to perform ordinary least squares
by forming the matrix (X⊤X)−1X⊤ for solving

min
π
∥Xπ − U∥F

in order to learn the optimal policy π∗ ∈ R2700×3. Report what happens as you attempt to do
this and explain why.

(c) Now try to perform ridge regression:

min
π
∥Xπ − U∥2F + λ∥π∥

2
F

on the dataset for regularization values λ = {0.1, 1.0, 10, 100, 1000}. Measure the average
squared Euclidean distance for the accuracy of the policy on the training data:

1
n

n−1∑
i=0

∥x̄T
i π − u⊤i ∥

2
2

In the expression above, we are taking the ℓ2 norm of a row vector, which here we take to mean
the ℓ2 norm of the column vector we get by transposing it. Report the training error results
for each value of λ.

(d) Next, we are going to try standardizing the states. For each pixel value in each data point, x̄,
perform the following operation:

x̄ 7→
x̄

255
× 2 − 1

We know that the maximum pixel value is 255, so this operation rescales the data to be in the
range [−1, 1]. Repeat the previous part and report the average squared training error for
each value of λ.

(e) Evaluate both policies (i.e. with and without standardization) on the new validation data
x test.p and y test.p for the different values of λ. Report the average squared Euclidean
loss and qualitatively explain how changing the values of λ affects the performance in
terms of bias and variance.

HW2,©UCB CS 189/289A, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11



(f) To better understand how standardizing improved the loss function, we are going to evaluate
the condition number κ of the optimization problem above, which is defined as

κ =
σmax(XT X + λI)
σmin(XT X + λI)

or the ratio of the maximum singular value to the minimum singular value of the relevant
matrix. Roughly speaking, the condition number of the optimization process measures how
stable the solution will be when some error exists in the observations. More precisely, given
a linear system Ax = b, the condition number of the matrix A is the maximum ratio of the
relative error in the solution x to the relative error of b.

For the regularization value of λ = 100, report the condition number with the standardiza-
tion technique applied and without.
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6 Honor Code
1. List all collaborators. If you worked alone, then you must explicitly state so.

2. Declare and sign the following statement:
“I certify that all solutions in this document are entirely my own and that I have not looked
at anyone else’s solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your)
creation. Furthermore, all external material (i.e., anything outside lectures and assigned read-
ings, including figures and pictures) should be cited properly. We wish to remind you that
the consequences of academic misconduct are particularly severe!
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