Co 189 / 289A  Introduction to Machine Learning
Fall 2024 Jennifer Listgarten, Saced Daremi HW4

Due 10/25/24 11:59 pm PT

e Homework 4 consists of both written and coding questions.

e We prefer that you typeset your answers using I£IEX or other word processing software.
If you haven’t yet learned I£IEX, one of the crown jewels of computer science, now is a
good time! Neatly handwritten and scanned solutions will also be accepted for the written
questions.

o In all of the questions, show your work, not just the final answer.

Deliverables:

1. Submit a PDF of your homework to the Gradescope assignment entitled “HW 4 Written”.

Please start each question on a new page. If there are graphs, include those graphs in the
correct sections. Do not just stick the graphs in the appendix. We need each solution to be
self-contained on pages of its own.

¢ Replicate all of your code in an appendix. Begin code for each coding question on
a fresh page. Do not put code from multiple questions in the same page. When you
upload this PDF on Gradescope, make sure that you assign the relevant pages of your
code from the appendix to correct questions.

. Submit all the code needed to reproduce your results to the Gradescope assignment entitled
“HW 4 Code”. Yes, you must submit your code twice: in your PDF write-up following
the directions as described above so the readers can easily read it, and once in the format
described below for ease of reproducibility.

e You must set random seeds for all random utils to ensure reproducibility.

e Do NOT submit any data files that we provided.

e Please also include a short file named README listing your name, student ID, and
instructions on how to reproduce your results.

e Please take care that your code doesn’t take up inordinate amounts of time or memory.
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1 Derivation of PCA

Assume we are given n training data points (X;,y;). We collect the target values into y € R”, and
the inputs into the matrix X € R™ where the rows are the d—dimensional feature vectors x;
corresponding to each training point. Furthermore, assume that the data has been centered such
that % 21 Xi = 0, n > d and X has rank d. The covariance matrix is given by

n

1 S S\ T
2= ) - -%)

i=1

When X = 0 (i.e., we have subtracted the mean in our samples), we obtain X = %XTX. We will
assume this to be the case for this problem.

(a) Maximum Projected Variance: We would like the vector w such that projecting your data
onto w will retain the maximum amount of information, i.e., variance. We can formulate the
optimization problem as

1 n ) 1
max — (X,Tw) = max -wX Xw. (1
wiiwl=1 1 = wiiwl=1 1

Show that the maximizer for this problem is equal to the eigenvector v; that corresponds to the
largest eigenvalue A; of X. Also show that the optimal value of this problem is equal to A4;.

Hint: Use the spectral decomposition of £ and consider reformulating the optimization prob-
lem using a new variable.

(b) Let us call the solution of the above part w'). Next, we will use a greedy procedure to find the
ith component of PCA by doing the following optimization

maximize (W)X Xw"
subject to  [[w@[, = 1 (2)
(wwD =0 Vj<i,

where the w” vectors for all j < i are defined recursively using the same maximization proce-
dure above. Show, using your work in the previous part, that the maximizer for this problem
is equal to the eigenvector v; that corresponds to the ith eigenvalue A; of £. Also show that
optimal value of this problem is equal to A;.
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2 PCA and Least Squares

Consider the ridge regression estimator,

- . : 2 2
Wiigge *= arg min [[Xw — ylly + Ajwll.
we

where X € R™4 and y € R". Suppose that X has already been centered and has singular value
decomposition X = ULVT = Y%, oyuv], where U € R™4, X € R and V € R*, and o} >
o, > -+ > 04 > 0 are the diagonal components of Z.

(a) Show that

d
Wridge = ZPA(O' Dvil] y

i=1

for some function p,(c) that you will determine. What is p,(c") for Wyigee? What is p,(c-) for
WoLs = arg min,, [|Xw — y|[5?

(b) The ordinary least squares regression problem on the reduced k-dimensional PCA feature space
(PCA-OLYS) can be written
Wpca = arg m]iRQ IXViw =yl
we

where V, € R®* is a matrix whose columns are the first k right singular vectors of X. This
expression embeds the raw feature vectors onto the top k principal components by the trans-
formation VkT x;. Assume the PCA dimension is less than the rank of the data matrix, k < r,
which implies that the matrix of PCA embedded data matrix XV, has full rank.

(i) Write down the expression for the optimizer Wpca € R¥ in terms of U, y and the singular
values of X.

Hint: Just as V; is a “shortened” version of V, you may want shortened version of U and
Z. Knowing that VTV = I, what is the value of V,"V?

(ii) Note that the Wpca € R* you computed above is the vector of features applied to matrix
XV,. The actual features applied to X is the vector Vpbpca € RY. Rewrite ViWpca in
summation form similar to that in part (a).

(c) Compare the functions of ¢ you derived and what value of A leads to Wors VS. Wrigge VS. Wpca.-
How do ridge regression and PCA-OLS deal with overfitting?
Hint: Penalizing certain types of singular values o7; is a way to deal with overfitting.
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3 Random Feature Embeddings

In this question, we revisit the task of dimensionality reduction. Dimensionality reduction is useful
for several purposes, including visualization, storage, faster computation, etc. We can formalize
dimensionality reduction as an embedding function, or embedding,  : R? — R*, which maps
data points Xy, ..., X, with d-dimensional features to reduced data points ¥(x;), ..., ¥(x,) with k-
dimensional features.

For the reduced data to remain useful, it may be necessary for the reductions to preserve some
properties of the original data. Often, geometric properties like distance and inner products are
important for machine learning tasks. And as a result, we may want to perform dimensionality
reduction while ensuring that we approximately maintain the pairwise distances and inner products.

While you have already seen many properties of PCA so far, in this question we investigate whether
random feature embeddings are a good alternative for dimensionality reduction. A few advantages
of random feature embeddings over PCA can be: (1) PCA is expensive when the underlying di-
mension is high and the number of principal components is also large (however note that there are
several very fast algorithms dedicated to doing PCA), (2) PCA requires you to have access to the
feature matrix for performing computations. The second requirement of PCA is a bottleneck when
you want to take only a low dimensional measurement of a very high dimensional data, e.g., in
FMRI and in compressed sensing. In such cases, one needs to design an embedding scheme before
seeing the data. We now turn to a concrete setting to study a few properties of PCA and random
feature embeddings.

Suppose you are given n points X, . .., X, in R%.

Notation: The symbol [#] stands for the set {1, ..., n}.

(a) Now consider an arbitrary embedding ¢ : RY — R¥ which preserves all pairwise distances and

norms up-to a multiplicative factor for all points Xy, ..., X, in the data set, that is,
(1 = olxill* < llyx)I* < (1 + o)lixilI* forallie[n], and (3)
(1 - ollx; — x;II* < llw(x) — wx)IF < (1 + o)llx; — x> forall i, j € [n], “4)

where 0 < € < 1 is a small scalar. Further assume that ||x;|| < 1 for all i € [1#]. Show that the
embedding v satisfying equations (d) and (3) preserves each pairwise inner product:

p(x)TY(x)) — (x/x)| < Ce,  foralli, je€ [n], )

for some constant C. Thus, we find that if an embedding approximately preserves distances
and norms up to a small multiplicative factor, and the points have bounded norms, then inner
products are also approximately preserved upto an additive factor.

Hint: Break up the problem into showing that ¥/(x;) "¥/(X;) — (xX;) > —Ce, and ¥(X;) "¥(X;) —
(x/x;) < Ce. The constant C = 3 should work, though you can use a larger constant if you
need. You may also want to use the Cauchy-Schwarz inequality.

(b) Now we consider the random feature embedding using a Gaussian matrix. In next few parts,
we work towards proving that if the dimension of embedding is moderately big, then with high
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(c)

(d)

probability, the random embedding preserves norms and pairwise distances approximately as
described in equations (@) and (3)).

Consider the random matrix J € R*? with each of its entries being i.i.d. (0, 1) and consider
the map 5 : R? — RF such that yj(x) = \/L];Jx. Show that for any fixed non-zero vector u,

210§

Il can be written as
u

k
>z
i=1

where Z’s are i.i.d. N (0, 1) random variables.

the random variable

x| =

For any fixed pair of indices i # j, define the events

s v

ij

L e(l-el+e
i = x|

which corresponds to the event that the embedding ¢y approximately preserves the angles
between x; and x;. In this part, we show that A;; occurs with high probability.

To do this, you will use the fact that for independent random variables Z; ~ N(0, 1), we have
the following probability bound

P <2e7* B forallt € (0,1).

1 k
%ZZ?é(l—t,l+t)
i=1

Note that this bound suggests that 3’5, Z> ~ k = Y%, E[Z?] with high probability. In other
words, sum of squares of Gaussian random variables concentrates around its mean with high
probability. Using this bound and the previous subproblem, show that

c —k52/8
P|AG| < 27K,
where Aj; denotes the complement of the event A;;.

Using the previous problem, now show that if k > 15—2 log (%), then

2
P| forall i, j € [n],i # J, ”%(Xi) — ‘bJ(Xj)” c

; (l-el+e|>1-6
s =

That is show that for k large enough, with high probability the random feature embedding
Yy approximately preserves the pairwise distances. Using this result, we can conclude that
random feature embedding serves as a good tool for dimensionality reduction if we project to
enough number of dimensions. This result is popularly known as the Johnson-Lindenstrauss
Lemma.
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Hint 1: Let

||¢J(Xi) - l//J(Xj)”Z .

A:=1 foralli,je[n],i#]j, >
i = x

(1-¢€1+¢€)

denote the event whose probability we would like to lower bound. Express the complement
A in terms of the events A7, and try to apply a union bound to these events.
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4 Interpreting Neural Nets Using T-SNE

For this question, please go through the Google Colab Notebook here to complete the code.

In lecture, you have learned about how t-SNE is a method for nonlinear dimensionality reduction.
This is particularly useful for analyzing many real-world datasets in which the data can be cate-
gorized according to underlying labels. In this question, you will examine the effect that a neural
network has on the t-SNE of such a dataset.

(a) We will work with the CIFAR-10 dataset for this problem, in which the image data is catego-
rized into 10 classes. Flatten the images and take the t-SNE of the training dataset. Plot the
t-SNE embeddings and color-code each data point according to its class. Explain what you
observe.

(b) Now, we have provided a trained neural network for you to analyze. Save it to your Google
Drive so that you can access it from the Colab notebook. The model consists of several convo-
lutional layers and a few linear layers. Calculate its accuracy on the test data.

(c) Instead of taking the t-SNE of the training dataset directly, we will take the t-SNE of the
features of the neural network when the training dataset is given as input. Using the “hook”
functions provided in the notebook, save the outputs of the third convolutional layer of the
network for each input data point. Take the t-SNE of these outputs and color-code each point
according to its class. Explain what you observe.

(d) Do the same as the above except for both the first and second linear layers of the network.
Overall, what does it look like the network is doing to the data? How might this change
depending on the network’s accuracy?
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https://colab.research.google.com/drive/1yiRHfxSMqqzzE-3z7Omqhk_-YV37Bily?usp=sharing

5 AStI'OIlOIIlGI’7S Conundrum

As machine learning invades everything in the world, you find that you can use machine learning
to classify celestial bodies. Conveniently, you lose all your precious data and only have the rates
at which these celestial bodies lose their mass via stellar wind.

There are three types of celestial bodies that you want to classify: dwarfs, giants, and black holes.
Dwarfs slowly lose their mass; giants rapidly lose their mass; black holes, on the other hand, gain
mass by absorbing stuff (i.e., they lose mass at negative rates).

Before we continue, let’s familiarize ourselves with a kind of probability distribution called the
exponential distribution. The probability density function of an exponential distribution with pa-
rameter A has the following form:

Foed) e ™ x>0,
x;A) =
0 x<0.

Note the pdf decreases monotonically on [0, +00).

The rate at which a dwarf or a giant loses its mass is exponentially distributed with parameters A,
and A,, respectively. The rate at which a black hole gains mass is also exponentially distributed,
with parameter A,.

(a) Suppose that we estimate the rate of loss for dwarfs and giants as 4; = 4 and 4, = 3 respec-
tively. Moreover, we estimate the rate of gain for black holes as 1, = 5 (i.e. the rate of loss
for black holes is —5). We also know that 60% of all the celestial bodies are dwarfs, 30% are
giants, and 10% are black holes. Determine the optimal Bayes classifier that assigns a new
data point to one of these three classes based on its rate of loss x. Assume we use a 0-1 loss.

(b) Following the previous question, find the risk of your Bayes classifier. Feel free to use Wolfra-
mAlpha or some other software for the integration.
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60 Risk Minimization with Doubt

Suppose we have a classification problem with classes labeled 1, ..., c and an additional “doubt”
category labeled ¢ + 1. Let £ : RY — {1,...,c + 1} be a decision rule. Define the loss function
0 iffx)=y [f(x)efl,...,c},
L(fx),y) =4 if fx)#y [f(x)e{l,....ch (6)

A iffx) =c+1

where A, > 0 is the loss incurred for making a misclassification and 4; > 0 is the loss incurred for
choosing doubt. In words this means the following:

e When you are correct, you should incur no loss.
e When you are incorrect, you should incur some penalty A, for making the wrong choice.

e When you are unsure about what to choose, you might want to select a category correspond-
ing to “doubt” and you should incur a penalty A,.

In lecture, you saw a definition of risk over the expectation of data points. We can also define the
risk of classifying a new individual data point x as class f(x) € {1,2,...,c+ 1}:

R(F®) %) = D L(FX), i) P(Y = i] ).
i=1

(a) First, we will simplify the risk function using our specific loss function separately for when
f(x) is or is not the doubt category.

i. Prove that R(f(x) = i | Xx) = A.(1 — P(Y =i | x)) when i is not the doubt category (i.e.
i#c+1).
ii. Prove that R(f(x) =c+1]|x) = A,.

(b) Show that the following policy f;,:(x) obtains the minimum risk:

¢ (R1) Find the non-doubt class i such that P(Y =i | x) > P(Y = j | x) for all j, meaning
you pick the class with the highest probability given x.

e (R2)Chooseclassiif P(Y =i|x)>1— %

e (R3) Choose doubt otherwise.

Hint: In order to prove that f,,/(x) minimizes risk, consider proof techniques that show that
Jopr(x) “stays ahead” of all other policies that don’t follow these rules. For example, you could
take a proof-by-contradiction approach: assume there exists some other policy, say f’(x), that
minimizes risk more than f,,(x). What are the scenarios where the predictions made by f;,,:(x)
and f”(x) might differ? In these scenarios, and based on the rules above that f,(x) follows,
why would f”(x) not be able to beat f,,,(x) in risk minimization?

(c) How would you modify your optimum decision rule if 4; = 0? What happens if 4, > 4.7
Explain why this is or is not consistent with what one would expect intuitively.
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7 HODOI’ COdG

1. List all collaborators. If you worked alone, then you must explicitly state so.

2. Declare and sign the following statement:

“I certify that all solutions in this document are entirely my own and that I have not looked
at anyone else’s solution. I have given credit to all external sources I consulted.”

Signature :

While discussions are encouraged, everything in your solution must be your (and only your)
creation. Furthermore, all external material (i.e., anything outside lectures and assigned read-
ings, including figures and pictures) should be cited properly. We wish to remind you that
the consequences of academic misconduct are particularly severe!
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