CS 189/289

Today’s lecture:

1. From logistic to softmax.

2. Convolutional neural networks

3. Residual neural networks (resnets)



CS 189/289

Today’s lecture:
1. From logistic to softmax.



Recall: logistic loss for binary classification

Neural networks can be modeled by logistics
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What if we have more than 2 classes?




From logistic regression to softmax regression
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From logistic regression to softmax regression
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The softmax function for K-class classification

Bir Generalization of logistic regression to
more than 2 classes.

Y = 110 | . ”Softmax regression” or "multinomial
p(y=20 B logistic regression”, parameters 3.
p(Y =31X) | = \‘Z Eax « Use principle of MLE to set g.

(v =KIX)| » Needs iterative optimization like

gradient descent.
Can also stick at the top of neural
Bi X network to get a “softmax” loss.
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The softmax function for K-class classification

For class "i-, the logit (log-odds) is defined as:
. P(y=i
logit, = log (L2 )‘

p(Y = 11X)] [
p(¥ =21X)| ,
p(Y =31X)|= X B X . :
Z 2, For class "i°, the softmax function is defined as:
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CS 189/289

Today’s lecture outline:

2. Convolutional neural networks



Recall: fully connected neural networks




Recall: feed forward, fully connected neural networks

Computing o for neuron in intermediate layer
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Beyond fully connected, feed-forward architectures:

1. Convolutional
2. Residual
3. Recurrent (not “feed-forward").
4. Attention and Transformers.
5. Graph
* As long as we have a feed-forward network, and use only
differentiable components, we can apply backprop.

* New architectures have led to break-through successes.



Pondering fully connected neural networks

* For "fully connected” (FC) layer, [, with n; (1) inputs and
n, (1) outputs, W, contains n;(l) X n,(l) parameters.

« Adds up quickly to huge #s of parameters.

« TJoo many parameters can contribute to problems of
"overfitting”.

hitkion leyor 1 bidclon leyor @ hkldon layor 5

lnpak layar




Pondering fully connected neural networks

* For "fully connected” (FC) layer, [, with n; (1) inputs and
n, (1) outputs, W, contains n;(l) X n,(l) parameters.

« Adds up quickly to huge #s of parameters.

« TJoo many parameters can contribute to problems of
"overfitting”.

hitkion leyor 1 bidclon leyor @ hkldon layor 5

lnpak layar

> Strategy to reduce # of
free parameters: "bDake”
in properties that encode
problem symmetries.




Examples of common problem symmetries

translation invariance

I | S(I)
& 4

o

cat = ‘cat’
f(D fs)

Predict: is a cat vs. not a cat

translation equivariance

I " _5'5(1) ,
. B

Predict: which pixels are cat pixels?



Examples of common problem symmetries
permutation invariance permutation equivariance

f(:&,&,&:) = :‘a \_,/: f(:&agadl:) = :‘7‘07\-//-
(R &,L)=(¢v] (R ,AL):=[06,

f([‘&, 2 ,.&]) =[®, /] f(k&, 4 33]) =[,®,9]
f(x) = f(Perm(x)) Perm(f(x)) = f(Perm(x))

Predict vector output.



Examples of common problem symmetries
rotation invariance rotation equivariance

ol vk
| i \f

liquid liquid S

predict phase (is liquid?)
at room temperature predict (vector)



Examples of common problem symmetries

translation (nvariance translation equivariance
_ | | =

—— | _—
* The convolution operation is translation equivariant.
e This operation will form the basis of convolutional neural
— networks (CNNs).
« CNNs also be motivated by the idea of learning re-usable

features (next).

‘cat’ ‘cat’ i _S 1

Predict: is a cat vs. not a cat Predict: which pixels are cat pixels?




Features sharing across one input example

"Features” (e.g. is there an eye here?) constructed in fully connected layer cannot
be shared across the input (e.g. image), because w is not reused across the image.

One neuron in FC layer:

y:

w ] Y
hikklen layer 1 hidden layer 2 hidlden layer 3

inpak layer

X
x is the cat
matrix flattened
to a 1D vector

w operates on
the entire image




Features sharing across one input example

"Features” (e.g. is there an eye here?) constructed in fully connected layer cannot
be shared across the input (e.g. image), because w is not reused across the image.

With Conv layer: One neuron in FC layer:
] | P
! oF
L 0y Y
W y
P#patches col2im
E?aaaagaaaaaagigaa%%%
1 [l 1o
E%im‘:;g’,’" &%%%%%%%%%ﬁ%g
I! ‘E I im2cal -
L L - X
Eﬂm‘ﬂf | %
mZ" A ./ . .
[ use 2D image
I j'/’i l ; I T g w onerates on
patches as input v UpEiates L
Now w takes the entire image
(overlapping) patches

« ConvNet: learn shared features that are applied to every image patch.
« Also gives us translational equivariance for each filter (w) response.




Fully Connected (FC): no feature sharing

‘global template matching”.

e.g. one W matrix per class

Uses
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Fully Connected (FC): no feature sharing
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Fully Connected (FC): no feature sharing
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Fully Connected (FC): no feature sharing

‘global template matching”.

e.g. one W matrix per class

Uses
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single layer
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What would re-usable features look like?

What if we could learn “local feature filters”

Then on the next layer, learn how to combine them?

With Conv layer:

Now w takes
(overlapping) patches
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Convolutional NNs (CNNs/"Convnets”)

prediction of class

Can view CNNs as high-level "
[ B N ] T

a way to construct parts GO
hierarchical e » distributed representations
features, each of parts - feature sharing

: = compositionality
Wthh.get low level
combined at the parts
next level.

Input image

1]
Lee et al. “Convolutional DBN's ..." ICML 2009 Hanza‘tuﬂ



Convolutional NNs (CNNs/"Convnets”)

1*zamm
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Can view CNNs as
a way to construct
hierarchical
features, each of
which get
combined at the
next level.
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Convolutional NNS (JCNNS/”Convnets”)

With Conv laye¥:

7
Q\]_(D Cony -

/
#patches ﬂcolZim

use 2D image
patches as input

Now w takes » B
(overlapping) patches -
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(2D) Convolution

Al A NN ALV P
e, AN ST =

Convolve one learned "filter”, W with the input
to get convolution output {v;;}:

For each position, i, j:
1. Element-wise product of W with image
patch centered on i,j (e.g. 3 X 3).
2. Sum up the results to get one v;;.

W called filter/template/kernel



Convolutional NNs (CNNs/"Convnets”)

- BINEF N2

«  We will actually use multiple feature maps, {W}x_, SIS NSSE
«  "Depth” of output “volume" is K

Y —

e

—

Convnet

Filter

One
Feature
Map

All Feature Maps

= a(v;;).

Non-linearity to get hidden
node in a hidden layer in CNN
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e For n-dim convolution, we use an n-dim filter. t t =5
 So 1D convolution has a 1D filter.

Formally: 1D convolution

(axb) = (b*a)

If a and b are two arrays, ax(bxc)=(a*b)*c

a*bt—Za,rbt -

t'th element of the convolution— [0,1,2,...} & 0'((” +("?‘

* T (S the index of the filter element ("-" means flip filter first)

* Invalid indices, e.qg., t = 1,2,3 and t = 3, are boundaries; don't compute
those tt" entries, or else pad out e.g. with zeros/mirroring input.
« No padding, size of output is D — K + 1 for D length input, K length filter.

Cross-correlation: (a®b); = Y., a;b; .,



1D convolution Method 1: flip-and-filter

(a*b)t:ZaTbt_T. — J_;_L 0 m —
::I”T {IT-'“EH T“}
2 i 2 ¢ 2¢
[t 11t [t

[
1111111




1D convolution

Method 2: translate-and-scale

(a X b)t — Z aTbt_T —




1D convolution

Method 3
Convolution can also be viewed as matrix multiplication:

Wy
\ 4

N

(axb)e=> arber = (2,-1,1)%(1,1,2) =

T

N = =

(
L) T I
\ 2/

Wy, has size 5 X 3, which means it has 15 entries, yet there are only
3 parameters. Why Convnets to have relatively few parameters!




From 1D to 2D convolution  (A*B)j=>» > AaBi_sj_t

Method 1: Flip-and-Filter

131 T3
0|-1|1] 5k
0 -1
2|21
10
\ 1[3]1 X 2 15|72
' 0f-1] 1 0 -4 |1
2| o |-1 216 |4 |-3
092 | -2 | 1




From 1D to 2D convolution — “A*B)i = 2.2 AxBiss

Method 2: Translate-and-Scale

131
1><0-11
2|21
31 11572
A 1]2 0|-1]1 0|2 -4|1
o111 %k :—|—2>< =
0 |-1 2| 2|-1 26|43
2|21
0|-2|-2|1
+_1 31
—1 X 0|-1]1
2|2 |-1




2D convolution convolution is 2 X 2

* ImageisD X D.
* N filters each of size K X K.
* No zero-padding.

Then output from one filter has size: D=14x4
D—-K+1)x(D—K+1)

For all N filters, /

NX(D-—K+1)xXx(D—-K+1) =




Fully-connected layer (no shared features)

Example: 200x200 image
40K hidden units

m) ~2B parameters!!!

Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Udqg }"Ziwr n



Convolutional layer

learns shared features via
T=—— learned convolution kernels

7 -
> ;
$
.
# " A 4
Y>3 \\
o >
:

S Example: 200x200 image
——— . 40K hidden units
Filter size: 10x10

4M parameters




Convolution Layer

One "neuron”/kernel that “looks at” 5x5 region and outputs a sheet of activation map
1x28x28

3x32x32 image activation map

3x5x5 filter

convolve (slide) over

32 all spatial locations
28

=\

I

\
N

|—\

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



Convolution Layer

Add a second neuron/kernel. two 1x28x28

3x32x32 image activation map

——0 N

convolve (slide) over

32 all spatial locations
/ 28

N\

=\

I

\
N

=

[ERY

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021




Convolution Layer

6 activation maps,

_ each 1x28x28
3x32x32 image Can keep on adding, e.g.

/ 6 filters, each 3x5x5

Convolution
Layer

32 I /
% ex3xsxs (T
3 filters I Stack activations to get a

I I I I I 6x28x28 output image!

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



Convolution Layer

28x28 grid, at each

point a 6-dim vector
3x32x32 image Also 6-dim bias vector:

|

| .
_ bicklew layer 1 lidkdew layer 2 bieen lager 3 Convolution ‘
inpak layer >

Layer

I

(YA YA S

I I I I I I Stack activations to get a

6x28x28 output image!

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021




Intuition of 2D convolution kernels

"blurring” filter



Intuition of 2D convolution kernels

‘oriented edges”



Intuition of 2D convolution kernels

‘sharpen”



Intuition of 2D convolution kernels

Gradient descent on
loss will decide.



Receptive Fields

For convolution with kernel size K, each element in the
output depends on a K x K receptive field in the input

e

N

Input Output

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021




Receptive Fields

Each successive convolution adds K - 1 to the receptive field size
With L layers the receptive field sizeis1 + L X (K - 1)

Input Output

Careful — “receptive field wrt to the input”
vs “receptive field wrt the previous layer”

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 -

March 11, 2021



Receptive Fields

Each successive convolution adds K - 1 to the receptive field size
With L layers the receptive field sizeis1 + L X (K - 1)

prediction of class

—

= | high-level | ;
| | parts oun nee €10,

! | T
| mid-level ' ﬁ
| parts S

low level
parts
Input Output
Vs “rec ; layer”

Lee et al. "Convolutional DBN's ..." ICML 2009

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



Receptive Fields

Each successive convolution adds K - 1 to the receptive field size
With L layers the receptive field sizeis1 + L X (K - 1)

ol
| Problem: For large images |
— we need many layers for == ﬁ
= each output to “see” the L =
| whole image image _
e T O O O
Input Output

Solution: downsample inside the network
1. “Strided” convolution
2. Pooling

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021




1. Strided Convolution

Input: 7x7
Filter: 3x3
Stride: 2

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



1. Strided Convolution

//ﬂ\§9 Input: 7x7

Filter: 3x3

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



1. Strided Convolution

/\.) Input: 7x7
Filter: 3x3 Output: 3x3

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



1. Strided Convolution

Input: 7x7

Filter: 3x3 Output: 3x3

Stride: 2

In general:

N

N
Input: W -
Filter: K
Padding: P

o o o o o o o o o

(=) o o o o (=) o (=) o

o|o0ojo0ojo0f0|0]|O

Stride: S

Justin Johnson & David Fouhey

Output dimension: (W —-K+2P)/S+1
(one dimension of the output square)

EECS 442 WI 2021: Lecture 15 - March 11, 2021



2. Pooling layers downsample its inputs

Also adds some local translational invariance (by summing/averaging):

Convolved Pooled
feature feature

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

Hanzatom

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - neural-networks-using-keras-and #Akr Qi BEP1L




2. Max pooling

Max(1, 1 No learnable
parameters!

Max pooling with 2x2
kernel size and stride

NG I
) 4 i max pool with 2x2 filters '
5| 6/ 7 | 8| andstide2 6| 8
7 N
3| 2 3|4
1123 ]| 4
=

Justin Johnson & DaVid/ FE(REy™!-com/2015/TI/underspres 4ay Wi 20213 Lettiie 1 5= ornp/ March 11, 2021



2. Average pooling

64 x 224 x 224

Single depth slice

2 3 2 4
X . .
Avg pooling with 2x2
5 6 6 8 kernel size and stride 2 4 5
3 2 1 0 2 2
1 2 3 4
» No learnable

parameters!

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - March 11, 2021



Side note: sigmoid vs RelLU non-linearity in NNs

. 702) :1+le—- Rectified Linear
| Unit (ReLU)
g(x)=max(0,x)

7

sigmoid

Rel U:
1. Gradient doesn’t die in one direction.
2. More efficient to compute.

3. Easier to get exactly zero activations:
sparsity.




Putting it altogether! ConvNets: conv + RelLU + pooling

{z;} from y; = ReLU(z) max convolution
convolutions ' ' pooling

convolution layer pooling layer



Putting it altogether! ConvNets: conv + RelLU + pooling
Receptive field increases

{z;} from y; = ReLU(z,) max convolution
convolutions ' ' pooling

convolution layer pooling layer



Example CNN architecture

Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps units units Dutputs
I@3I2x32 32@1Bx18 32@10x10 48 (mexE 43 @dxd 768 S00 2
="
Convolution Max-pooling Comvolution Max-pooling Flatten Fully Fully

x5 kernel 2x2 kernel xS kernel 2x2 kernel connected connected



Training CNNs

Gradient descent with back-propagation algorithm.

1. Goal is still MLE/ maximize cross-entropy.

2. Shared weights (via one convolution filter) = sum over
gradient for each use of one filter.

3. Max-pooling = gradient only gets back-propagated
through the neuron that “won” the max pool—technically
this is a "sub-gradient”.



