CS 189/289

Today:
1. Residual Networks

2. Recurrent Neural Networks
3. Attention and Transtormers

Attention and transformer slides are based on those
from Prof. Levine's CS 182, slides and lectures, here.

CS 189/289

Today:
1. Residual networks

Reca

0 from last lecture (CNNs)

-eatures sharing across one input example

"Features” (e.g. is there an eye here?) constructed in fully connected layer cannot

| - .. I ~ e ~ —~ i '(--’L . b -~ .'_1:‘ ETalalel Bl e L ~~t rarica | NO— _._"_\ - - N
pDe share d across the in PULl (€.9. IMmage), pecause w is not reused across the ima gJe.

With Conv layer: One neuron in FC layer:

w Y J
Pitpatches col2im

ol 0 P
‘E F I / im2col - :
= T8 §p / 4 .I‘
IS | /= y
: use 2D image '
patches as input W operates on
Now w takes : the entire ima
- ge
(overlapping) patches

w Y

« ConvNet: learn shared features that are applied to every image patch.
« Also gives us translational equivariance for each filter (w) response.

Recap from last lecture (CNNs)

Putting it altogether! ConvNets: conv + RelLU + pooling

Receptive field increases

{z;} from
convolutions

= Reliti(z max convolution
Yu = ReLl(z) pooling

convolution layer pooling layer

Recap from last lecture (CNNs)

Putting it altogether! ConvNets: conv + RelLU + pooling

Receptive field increases

{z;} from
convolutions

= Reliti(z max convolution
Yu = ReLl(z) pooling

convolution layer pooling layer

Recap from last lecture (CNNs)

Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps units units Outputs
3@32x32 32@18x18 32@10x10 48@6x6 48@4x4 768 500 2
%
Convolution Max-pooling Convolution Max-pooling Flatten Fully Fully
5x5 kernel 2x2 kernel 5x5 kernel 2x2 kernel connected connected

CNNs start winning vision competitions 2012

28.2
First CNN-based winner 25.8

Deeper N

seems better

Why Stop at [22 layers ||| 19 layers | -

22 layers? e |z I .
e

ILSVRC'14 | ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
GoogleNet VGG AlexNet

Error Rate

Figure copyright Kaiming He, 2016.

ImageNet Large scale visual recognition challenge (ILSVRC)

https://www.researchgate.net/figure/Performance-of-different-approaches-in-lmageNet-2015-competition_fig2 309392322

“Vanishing gradient” problem

lent at

grad

closest to input) would get smaller and smaller.

not known how to use very deep models:

(

/

Until 2015

lower levels

o

e O & <

NS O
KEZHAN

¢ JoAe| uoppry g 1ofe| uoppry |

. 19&%] yndur
IoA®] uoppiy

Hidden layer 1
Hidden layer 2
Hidden layer 3 [7
Hidden layer 4

10¥

-1
-3

0

magnituae
of gradient 1

1

10‘4 Ll e s s s s e e e o B e i 4 S R B b s B S R R
10°®

200 300 400 500

Number of epochs of training

100

Intuition for vanishing gradients from depth

Computing o for neuron in intermediate layer
Deriving the basic step of “backpropagation”

—
—

(INDucTIow ST%

0.
SLL V _ delw)

The gradient is a
product of numbers,
where the # of terms
scales with the
number of layers.

These large products
tend to be unstable:
vanishing (ana
exploding).

"Resnets” (Residual Networks) to the rescue

30

= N N
U o Ul

Error Rate

[EY
o

28.2

152
Layer

152
Layer

152
Layer

22
Layer

2010 2011 2012 2013 2014 2014

Lin et al

Sanchez'& Krizhevsky et Zeiler &
Perronnin al (AlexNet)

Simonyan & Szegedy et al
Fergus Zisserman (VGG)(GoogleNet)

3.6

2015

He et al
(ResNet)

Shao et al

Separate idea
fromm CNNs: can
combine the
ideas in one
architecture.

5.1
3 2.3.
H =

2016 2017 Human

Huetal pissakovsky et al

(SENet)

Residual Networks (ResNets)

» ResNet goal: make it "easy” for layers to be set to the identity.
» Add previous layer inputs to current inputs (“skip connection”)

One residual layer: must be same dimension

» (an skip more than

z() = WDy 28 = F(x) +x one layer.
R — 0(2(1) * F(x) can have any
@) — @ h(l@ 4 ar(ch)itecture (ﬁ.g.dCNN).
h * F(x) = 0Isthe identity
= F(x)+x

mapping—layer has
> F(x) =23 —x been skipped!

r65i3m4| B

Residual Networks (ResNets) Ja
f

» (an string them together. Fa™ L
» Ability to "turn layers off”, making effectively)
shallower paths through the network. ?
F(x2)
A
Residual Networks Behave Like Ensembles of (2
Relatively Shallow Networks D
f
F(xM)
Andreas Veit Michael Wilber Serge Belongie
Department of Computer Science & Cornell Tech
Cornell University T (1)

= For 10 layer network, most paths are only 55 layers deep.
= Gradient during training comes mostly from paths of length 10-34.

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec16.pdf

\/amshmg grad|ent from saturating non-linearities

Activation functions saturatmg (problem amplified by depth)—
fixed with normalizations (e.g. "batch normalization”).

1. Normalize data in the mini-batch 2. Add scale and shift parameters, vy, B:

z) — E[zW)] hD = g(yz®D + B)
JVar[zM]

,(1) =

How to handle arbitrary length inputs?

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

e.g. predict
scalar property
from protein
sequence

NN

S
N

Wl XX g
- .::.'. — o
e A St
stability=
2.0 4 es
,"-‘ .

ROHONE

It
7 -*

@

0 AN
X &

MIKSMEAPRR

stability = 36°C

stability = 20°C

z &Y) \

MIKSMEAPRR ALKELIKSANVIALIDMME

How to handle arbitrary length inputs and outputs?

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

e.g. language *
.g. :
: L : U
translation s . 23
3 RS SO
o AR L7 S S
S SSE, XN S <
> o § Q
U - =
%) DS S —
S % o5 S
=T,
g < % - 8\
(@) Q S
o C ey ire s C =
Lot N AAEICRERY S
S = e\ O e\ O g 3
RS SN
T S VW /o \ S

Wie kénnen wir variable Eingabeldngen verwenden? Neuronale Netze verwenden nur Eingaben fester Ldnge

How can we use variable input lengths? Neural networks only uses fixed length inputs

How to handle arbitrary length inputs and outputs?

e g |m ag e — hidden layer 1 hidden layer 2 hidden layer 3
Y. input layer -
. B e %
captioning AN 2
' @
7 25 2S5 output layer &

A cute little In a heart walking next to a A large brown next to a
drawn on a sandy - little on top of a . small looking out a window.

How to handle arbitrary length inputs and outputs?

hidden layer 1 hidden layer 2 hidden layer 3

eg Orote|n input layer
structure =
prediction

MIKSMEAPRR

MIKSMEAPRR ALKELIKSANVIALIDMME

Generally called sequence-to-sequence models.

one to one one to many many to one many to many many to many

e.g., activity recognition e.g., frame-level video annotation

e.g., image captioning e.g., machine translation

Image: Andrej Karpathy

CS 189/289
Today:

2. Recurrent Neural Networks

-irst, consider only multiple inputs

" each layer:
r1 = (%1,1,1’1’2,551’3,331,4) : :-»H—»H—»H—»H—» —1 ag_l
11 a —
Ty = (22,1, 22,2, T2,3) g 1! Xt
_ =0 r 1t 1t 1 ¢ 0 0—1 | 1
X3 — (563,1,233)2,583’3,333,4,933,5) 1,1 T1,2 T1,3 T1.4 = W"a + b

: preceding this — _ .
variable per layer? doesn't matter « #of W, increases with
Pt max sequence length!

L21 22 I23

Can we use one input anything i i_ﬂ_ﬂ_ﬂ Problem:
&
0

Obvious question: * for small I few samples

what happens to the :-i to train with.
issi ==l ~H~H~F —— Fix tie layer parameters:
1l

missing layers?
OLE:O T T T T T Wl=W(aﬂdbl=b)
31 T3,2 T33 T34 T35 e Recurrent Neural Network

al is the running “memory” of the system

Variable # inputs and outputs
W each input gets its own output

yzl y2 yzS 94

HH ol

3711 L1,2 3713 T

9¢ = f(a")

_ just like before

some kind of readout
function, a "decoder”

A more general Recurrent Neural Network

An image-conditional model
YR T
- t- 1t 1 1t vector encoding of
: L»H—»@_H_H the desired content
& of the sequence

><o t 1ttt
Yio Yi1 Yi2 Yi3

|) <START> A cute puppy
| \ '
CNN encoder |
RNN decoder

This is an autoregressive generative model: we
generate each new word, ¥; ;, one at a time, having

fed in the previous ones, ¥; o.j—1

What it we condition on another sequence?

K cute puppy <EOS>
yz 1 yz 2 yz 3 yZ 4
vector encoding of

cad g gt the desired content
of the sequence

1 2 13 14

a _, a5 a’ a

t
i1 Tq,2 T4,3 LL'Ti,4 ’sz,o sz,l sz,z Yi,3
<START> Un chiot mignon <START> A cute puppy
| J \ J
[[
RNN encoder RNN decoder

This is an autoregressive generative model: we
generate each new word, ¥; ;, one at a time, having

fed in the previous ones, ¥; o.j—1

Sequence to sequence models

A cute puppy <EOS>
Uil Uio Uiz Yia
t o 1 1

> a1—>a2—>a3—>a4—

t ottt t ottt
ri1 Ti2 Ti3 T4 Yio Yi,1 Yi2 Yi3
<START> Un chiot mignon <START> A cute puppy
\ J \)
[[
RNN encoder RNN decoder

« Two separate RNNs: encoder & decoder
 Trained end-to-end on paired data (e.g., pairs of French & English sentences)
* Likelihood/cross-entropy loss, summing over each decoded word, in each sentence.

RNN bottleneck problem

all information about the
conditioned sequence is

contained in these activations A e pupy <05
Yil Yi2 Yi,3 YiA4
tt t 1

1 1
a alz a/3 a a2 a3 a4

t t t t How can we do this?
i1 Ti2 ;3 Yi,0 Yi,l Yi2 Yi3
mignon chiot Un <START> A cute puppy
I[dea: what it we could somehow “peek” at the source

sentence while decoding?
Attention to the rescue!

CS 189/289

Today:

3. Attention

Attention overview

compare gquery to each key to find Keys and queries
the closest one to get the right are learned.
m
key vector |- query vector
some function _[Intuition: |<ey mig Nt
(e.g., linear layer + RelLU) encode “the sy bject

of the sentence;
and query might ask
t 1 Howcanwedothis? t for "the subject of
i1 Li2 233 Yi,0 Yi, 1 Yi2 Yi,3 the Sentence”

mignon chiot Un <START> A cute puppy

Attention details

attention score for encoder input t to decoder step 1

/

et = Kt - qu

| TS

key: Kt = k(he) o

[A A A A

learned function

e.g., ky = o(Wihy + by)

RNN encoder activations at step t

not differentiable! hi{— hs — hs — S0 — 51,4, 52 — 53

intuitively: send h; for arg max; e;; to step { T T How can we do this? T
let o) = softmax(e. ;) Til Ti2 i3 Yio Yil Yi2 Yi3
S exp(et,l) mignon chiot Un <START> A cute puppy
t,l —
>y exp(ey 1)

send a; =), o 1hy

«—— approximates h; for argmax; e;

}— query: q = q(sy)

what does “send” mean?

who receives it?

output: 4; = f(sy,a)
S1—1

aj—1
Vi
(Le., append a to the input)

next decoder step S} =

If stacking these layers, then
‘send” output to concatenate
with input of next layer

Attention Walkthrough (Example)

Ctl — ki - q) 4 4

i1 Li2 X33 Yi,0o Yi,1 Yi2 Yi,3
gnon chiot Un <START> A cute u

Attention Walkthrough (Example)

T(ﬂ ¥ Oé?): Uil Uio

softmax |

f 4 4

€1 €92 €3

4 4 4

C? O, O

ki ke kK q2

! [
hl—»hg—»hg — 50 — 51 —» 92 — 53

i1 Li2 X33 Yi,0o Yi,1 Yi2 Yi,3
ignon chiot Un <START> A cute u

Attention Walkthrough (Example)

9 B D g s
- e, Yil Yi2 Yi3

o+ 4
€1 €2 €3
for
C? ONEO.
ki ke k3 2 g3

hl—»hg—»hg — 50 — 51 —» 92 — 53

LI S A SN SR N
i1 Li2 X33 Yi,0o Yi,1 Yi2 Yi,3
mignon chiot Un <START> A cute puppy

Attention Variants

Simple key-query choice: k and g are identity functions
ki = hy qr = Si

Decoder-side:

€t,l = hy - 8

exp(ét.i
TN (t)

o th eXp(et’J)
a; = Z ot hy
t

ooy
—) IR Yil

| softmax |
4 4 4
€1 €2 €3 T
4 4 4

hi— ho — hs — 50 — 81 — 82 — 53

Pttt
Ti1 Ti2 i3 Yi,0 Yi,l Yi2 Yi3
mignon chiot Un <START> A cute puppy

Attention Variants

Linear multiplicative attention:

ke = Wihy qi = WqSl

Decoder-side: /just learn this matrix

T T T
err = hI W W,s; = hI Wes,

exp(es. 1)

; th exp(e 1)
a] = Z Oétht
t

Qe [

Learned value encoding;:

a; — E Ot
t

v(ht)

\

some learned function

oy,
= — IR Yil

| softmax |
4 4 4
€1 €2 €3 T
4 4 4

hi— hs — hs — S0 — 81 — 52 — 53

Pttt
Ti1 Ti2 i3 Yi,0 Yi,l Yi2 Yi3
mignon chiot Un <START> A cute puppy

Attention is very powerful

> All decoder steps are
connected to all encoder steps!

»Connections can skip directly
ahead to where needed.

» Thus gradients can be much
better behaved than RNN
without attention.

s attention all we need?

Ia’l 2 ﬁ -
o m o, Yia
| softmax
R
€1 €2 fia \ T

t ot

O Q Q > g ey

ki ke k g1 | Q2 q3 44

I t/t/t 11

hl—hhg—hhS — 90 — 51 — 92 — 53

1 1 | S
Til Ti2 T3 Yio Yi,l Yi2 Yi3
mignon chiot Un <START= A cute puppy

CS 189/289

Today:

3. Attention and Transformers

This has a few issues we must overcome:
Decoding position 3 can’t access s; or So-
Solution: self-attention.

If we have attention, do we even

need recurrent connections?

Can we transform our RNN into a
purely attention-based model?

s Attention All We Need?

Iaf

F
aoftnn‘!-{
61 6’2 (’5 T

anfhf

hy— ho — hs — 50 — 51 — 52 — 53

r 1t 1 Pt 1t
Ti1 Ti2 T3 Yi0 Yil Yi2 Yi3
mignon chiot Un <START= A cute puppy

Selt-Attention (one layer)

ai

T
<
Cis—5 o =

/1 1A cak T -
I o3l o a3 €Lt =dqr it we'll see why this is important soon
| | I > .
| e | vy = v(hy) before just had v(h;) = hy, now e.g. v(hy) = Wy hy
€11 €1,2 €1,3 k; = k(h;) (just like before) — €.8., kt = Wrhy

N [\%% \L ¢ = q(hy) e.g., g = Wyh,

this is not a recurrent model!
ki1 41 U1 ko G2 V2 k3 G3|U3

Nt/ Nt/ Nt/

but still weight sharing:
h,t = O'(WZEt -+ b)
hq ho hs shared weights at all time steps

(or any other nonlinear function)

Self-Attention

A keep repeating until we’ve
= processed this enough

= then hand off to next part of overall
= model

self-attention “layer”

bttt ottt

aq

)

ﬁ———~—_~_-__-“—~—__

@:Q\Q J2 1ot
| M| - i o o
| softmax ___’| \ T /
€1,1 €1,2 e1,3 ? aq
N Y ’

ks 42\V2 ks 43|03
Nt/ Nt/
az as
t t

self-attention “layer”

bttt ottt

t t 1
Nt/ Nt/ Nt/ kl(ﬂ.
Nt/
h h h
1 9 3 hl
1 r 1 r
X1) T3 T

ky 4203 ks 43 |vg

Nt/ Nt/
h2 h3
f f

L2 I3

From Self-Attention to Transformers

* Self-attention lets us remove recurrence entirely, yielding the now
pervasively used Transformer model for sequences.
» But we need a few additional components to fix some problems:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer
3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Positional encoding: what is the order?

a1 what we see:

he hit me with a pie

)
—_—
O ©) :)
& what naive self-attention sees: hit with me
pie he @

/ A A /u
a1 Qa9 Q3
I B |, a pie hit me with he
| softmax | a hit with me he pie . L
€11 €1 €1 3 Permutation Equivariant!
’ ’ ’ he pie me with a hit
V\%%\L most alternative orderings are nonsense, but some change the meaning

ki1 41 U1 ko G2 V2 k3 G3|U3

/ / /
V] \ \ I Idea: add some information to the representation at the
h1 ho ha beginning that indicates where it is in the sequence!

ht — f(xtvt)

t t t
L1 L2 L3 ~— some function

in general the position of words in a sentence carries information!

Positional encoding: what is the order?

aq
®
< - sin 2¢1/d\ -
(t/100002*1/4)
K/q @ /Q cos(t/10000%*1/4)
I o o a3 sin(t/10000%*2/4)
[mmm [,), = | cos(£/1000022/4)
| softmax |
€1,1 €1,2 €1,3 sin(t/100002*2/4)
V\%%\L | cos(t/10000%5/4) |

\

d, is the dimensionality of
positional encoding

ki1 41|01 ko 42 V2 k3 (3 |U3

Nt/ Nt/ Nt/

h1 ho hs
ht — f(ajta t)

t t t A
X1 L2 L3 some function

From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very
powerful type of sequence model, called a transformer

 But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

1. Positional encoding

2. Multi-headed attention

3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?

Multi-head attention

|[dea: have multiple keys, queries, and values for every time step!

@ tull attention vector formed by concatenation:
a2.1
Ao = 012’2
- a273 -

compute weights independently for each head

erti =qri- ki

/_\
k11491,1Y11 kei1492,1V21 ksi 43,1 V3,1

vt a1, oats i =explen)/ Y explens)

hi ho hs api = Z Q0 t iVt g
' ' ' around 8 heads seems to work
e T2 3 pretty well for big models

From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very
powerful type of sequence model, called a transformer

 But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention

3. Adding nonlinearities

4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?

Self-Attention is Linear

ai

!
$
@“Q\@ O

/ A A / A
I o o) a3
| | I | »
| softmax |
€1,1 €1,2 €1,3

ki1 41|01 ko 42 V2 k3 (3 |U3

Nt/ Nt/ Nt/

a

E Ofl,tht
t

Fvery self-attention “layer” is a linear
transtformation of the previous layer

Alternating self-attention & non-linearity

self-attention “layer”

ttt ttt t1

T
ki a1 o1 ko a2|02 ks a3vg
/

\t /o Nt/ At

hi h i some non-linear (learned) function
f f T« 00 /

. s . e.g., ht = o(Wta! + b*)

t f t

self-attention “layer” _jUSJ[a ﬂeura| ﬂet apphed at e\/ery
tot tt ot ottt » .
ky cn. by 2[v2 ks as|vs position after every self-attention layer
\t/ Xt/ ANt/
Iy h) b
t 4 t
1 L2 I3

From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very
powerful type of sequence model, called a transformer

 But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?

Self-attention can see the future!

e.g. self-attention “language model”: t

Problem:
« Step 1 can look at future values (hence inputs).
« At test time ("decoding”), the output at step 1
will see the input at step 2 ...
 Also cyclic: output 1T depends on input 2 which
depends on output 1.
SO it can see itself, thereby “cheating”.

—00 otherwise

Solution: ey ¢ = { q ke i t<1

Now we are read for
The Transformer!

Seqguence-to-sequence with selt-attention

self-attention “layer”

t t 1 tt t t 1
ki @101 ko 92V k3 03
Nt/ Nt/ N\t

h? G2 hi

T

ai

T

T

az

T

self-attention “layer”

tt bttt

k1 Chw ko Q2w ks
Nt/ 4 \
Iy h

f

X1

f

o)

“Transformer” architecture:

» Stacked self-attention layers with
position-wise nonlinearities.

» Transform one sequence into
another at each layer.

* For sequence data.

[Vaswani et al. Attention Is All You Need. 2017]

from the previous lecture

Ssawlil N paileadau

1 1
] 1
1 1
m T —3
“Aw;u 9 [rﬁm - “ Alm “
“ P & =] o) !
1 m c = — oy !
£ o = c
wyp E =l | E o b
S = = = s
! e @ b 9 %) _
g~ E A E s NS
“ = pras] O = = U“
I 0 = O 7 - — 5
RSN Y — S = 8 o B m “
] o 1
] 1
1 1
L., .. |
e EEEmEmEmm_— i
i "~ i
(- 1 Q 1
O i T P
— = i S —2
e — H @ o
L m 2 bumyald
wn “ = ST
(- I c
— 5 m c P
+ ™ 1
O = : S
—— ! a :
1
) - | m
n O i Sowli} N paieadau i
— e e e e e e e e e A
O -
— 3
— =
©
.
L 9
¢ T
O - S-S
o | 1 |
O - “ i
U “ “
1 (-
D Mm TMW+|mH---A|.mW i O
1 1 O
ol JP R
= S-S5 S
I + i 4 !
- & . o |
Q) WSl - S
-
44—
O o
O °
| —_—
o =
=

t
€T
Encoder

One last detail: layer normalization

Main idea: batch normalization is hard to use with sequence models:
« Sequences are different lengths.
* Seqguences can be very long, so we sometimes have small batches.

Simple solution: “layer normalization” — one sample across whole layer

Batch norm d-dimensional vectors
5 « for each sample in batch

d-dim ‘P90
N 1E 1 & ,
LLZEZ@Z g — EZ(GZ_H’)

1=1

One last detail: layer normalization

The multi-headed attention vectors for one position in
a layer are stacked together to form vector a before
performing the operations below for the entire layer.

1 (k3 93,1 U3

| | So below, a € R% where d = K X R for K attention
A

. N B heads, and x € RX. This is done position-by-position.
t t t
Batch norm d-dimensional vectors Layer norm
Jodim @152, -, aB «— for each sample in batch a different dimensions of a
N 1]E 1 & 1< ./ -
= a; 0= —Z(ai—u)Q “:_Zaj 0 = _Z(aj_ﬂ)z
B B “ d d
i=1 1=1 / j=1 j=1
1-dim
_ a; — W - a; —

Putting it all together

The Transformer Output Decoder decodes one position at a
) FProbabiities i ; i
multi-head attention keys and values time with masked attention
kfgl,...,kf’m and Ufﬁl,...,vf,m
6 layers, each with d = 512 Linear
p ﬂ, . . .
T _ (Add 8 Norm J~ residual connection with LN
hy = LayerNorm(ay + fi) e | H— R = WEReLU(WEa! + bt) + b
passed to next layer £ + 1 \ Foward | ¢ = W2 1a; T 01 2
~ \ residual connection with LN
ht = WiReLU(Wal + bt) + b s . .
2 (Wia; +01) + b = Attention | < multi-head cross attention
2-layer neural net at each position o - o
—, § residual connection with LN
¢ = LayerNorm(h:™! + af) > 1 5{Add & Nom) Masked
)))) holLilti- H.Eﬂ'd fulti-Head < m a S ked
essentially a residual connection with LN | |y [Attention ALEILT
1t 1t
C— J —
. . -1 Positicnal Paositional
1I1put. ht Encoding ®_O Eu_ Encoding
Output: af Inputl Output
Embedding Embedding
concatenates attention from all heads T
Inputs Outputs
(shifted right)

Vaswani et al. Attention Is All You Need. 2017.

Transformers pros and cons

Downsides:
- Attention computations are technically O(n?)
- Somewhat more complex to implement (positional encodings, etc.)

Benefits:

+ Much better long-range connections
+ Much easier to parallelize

+ In practice, can make it much deeper (more layers) than RNN

