

Today's lecture outline

- 1. Finish Transformers
- Unsupervised learning, dimensionality reduction
 PCA

Today's lecture outline

- 1. Finish Transformers
- Unsupervised learning, dimensionality reduction
 PCA

Recall: RNN bottleneck problem

all information about the conditioned sequence is contained in these activations

Idea: what if we could somehow "peek" at the source sentence while decoding? Attention to the rescue!

Recall: Is Attention All We Need?

- If we have **attention**, do we even need recurrent connections?
- Can we transform our RNN into a purely attention-based model?

This has a few issues we must overcome:

- **Decoding position 3** can't access s_1 or s_0 .
- Solution: self-attention.

Recall: Self-Attention

keep repeating until we've

- processed this enough
- then hand off to next part of overall model

From Self-Attention to Transformers

- Self-attention lets us remove recurrence entirely, yielding the now pervasively used Transformer model for sequences.
- But we need a few additional components to fix some problems:

1. Positional encoding

- 2. Multi-headed attention
- Adding nonlinearities
 Masked decoding

addresses lack of sequence information allows querying multiple positions at each layer so far, each successive layer is *linear* in the previous one how to prevent attention lookups into the future?

Positional encoding: what is the order?

what we see:

he hit me with a pie

what naïve self-attention sees:

- a pie hit me with he a hit with me he pie
- he pie me with a hit

Permutation Equivariant!

Idea: add "positional" information, i.e. that indicates where it is in the sequence!

$$h_t = f(x_t, t)$$
 some function

Positional encoding: what is the order?

From Self-Attention to Transformers

- The basic concept of **self-attention** can be used to develop a very powerful type of sequence model, called a **transformer**
- But to make this actually work, we need to develop a few additional components to address some fundamental limitations

1. Positional encoding

2. Multi-headed attention

Adding nonlinearities
 Masked decoding

addresses lack of sequence information allows querying multiple positions at each layer so far, each successive layer is *linear* in the previous one how to prevent attention lookups into the future?

Multi-head attention

Idea: have multiple keys, queries, and values for every time step!

full attention vector formed by concatenation:

$$a_2 = \left[\begin{array}{c} a_{2,1} \\ a_{2,2} \\ a_{2,3} \end{array} \right]$$

compute weights **independently** for each head $e_{l,t,i} = q_{l,i} \cdot k_{l,i}$ $\alpha_{l,t,i} = \exp(e_{l,t,i}) / \sum_{t'} \exp(e_{l,t',i})$ $a_{l,i} = \sum_{t} \alpha_{l,t,i} v_{t,i}$ around 8 heads seems to work pretty well for big models

From Self-Attention to Transformers

- The basic concept of **self-attention** can be used to develop a very powerful type of sequence model, called a **transformer**
- But to make this actually work, we need to develop a few additional components to address some fundamental limitations
 - Positional encoding
 Multi-headed attention
 Adding nonlinearities
 Masked decoding

addresses lack of sequence information allows querying multiple positions at each layer so far, each successive layer is *linear* in the previous one how to prevent attention lookups into the future?

Self-Attention is Linear

$$k_t = W_k h_t \qquad q_t = W_q h_t \qquad v_t = W_v h_t$$

$$\alpha_{l,t} = \exp(e_{l,t}) / \sum_{t'} \exp(e_{l,t'})$$
$$e_{l,t} = q_l \cdot k_t$$

$$a_{l} = \sum_{t} \alpha_{l,t} v_{t} = \sum_{t} \alpha_{l,t} W_{v} h_{t} = W_{v} \sum_{t} \alpha_{l,t} h_{t}$$

Every self-attention "layer" is a linear transformation of the previous layer

Alternating self-attention & non-linearity

some non-linear (learned) function e.g., $h_t^{\ell} = \sigma(W^{\ell}a_t^{\ell} + b^{\ell})$

just a neural net applied at every position after every self-attention layer

From Self-Attention to Transformers

- The basic concept of **self-attention** can be used to develop a very powerful type of sequence model, called a **transformer**
- But to make this actually work, we need to develop a few additional components to address some fundamental limitations
 - Positional encoding
 Multi-headed attention
 Adding nonlinearities
 Masked decoding

addresses lack of sequence information allows querying multiple positions at each layer so far, each successive layer is *linear* in the previous one how to prevent attention lookups into the future?

Self-attention can see the future!

e.g. self-attention "language model":

Problem:

$$a_{l} = \sum_{t} \alpha_{l,t} v_{t}$$
$$\alpha_{l,t} = \exp(e_{l,t}) / \sum_{t'} \exp(e_{l,t'})$$

- Step 1 can look at future values (hence inputs).
- At test time ("decoding"), the output at step 1 will see the input at step 2 ...
- Also cyclic: output 1 depends on input 2 which depends on output 1.
- So it can see itself, thereby "cheating".

Solution:
$$e_{l,t} = \begin{cases} q_l \cdot k_t & \text{if } t \leq l \\ -\infty & \text{otherwise} \end{cases}$$

Now we are read for The Transformer!

Sequence-to-sequence with self-attention

"Transformer" architecture:

- Stacked self-attention layers with position-wise nonlinearities.
- *Transform* one sequence into another at **each** layer.
- For sequence data.

[Vaswani et al. Attention Is All You Need. 2017]

 x_2

 \mathcal{X}

 \hat{y}_4

 \hat{y}_3

Recall: batch normalization

"Vanishing gradient" from saturating non-linearities

Activation functions saturating (problem amplified by depth) fixed with *normalizations* (*e.g.* "batch normalization").

1. Normalize data in the mini-batch

2. Add scale and shift parameters,
$$\gamma$$
, β :

$$\widehat{z^{(1)}} = \frac{z^{(1)} - E[z^{(1)}]}{\sqrt{Var[z^{(1)}]}}$$

$$h^{(1)} = \sigma(\gamma \widehat{z^{(1)}} + \beta)$$

From batch to layer normalization

- Batch normalization tricky in sequence models: long sequences have small batches/poor stats.
- *Layer normalization*: multi-headed attention vectors for one position in a layer are stacked together to form vector *a*, over which mean & std. dev. are computed for one sample.
- Layer normalization is independent of the batch size.

$$\widehat{z^{(1)}} = \frac{z^{(1)} - E[z^{(1)}]}{\sqrt{Var[z^{(1)}]}}$$

$$h^{(1)} = \sigma(\gamma z^{\widehat{(1)}} + \beta)$$

Transformers pros and cons

Downsides:

- Attention computations are theoretically* O(n²).
- Somewhat more complex to implement (positional encodings, etc.)

Benefits:

- + Better long-range connections (compared to RNN).
- + *Much easier to parallelize.

+ In practice, can make it much deeper (more layers) than RNN.

- Benefits often vastly outweigh the downsides.
- Transformers work **much** better than RNNs in general.
- One of the most important sequence modeling improvements of the past decade.
- Can use just encoder, just decoder.

Today's lecture outline

- 1. Finish Transformers
- Unsupervised learning, dimensionality reduction
 PCA

Unsupervised learning

- So far: supervised learning, $\{(x_i, y_i)\}$ for $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$ or $y \in \mathbb{Z}$.
- Often model just $\{x_i\}$: unsupervised learning, includes:
- i. Dimensionality reduction, $z \in \mathbb{R}^m = f_{\theta}(x \in \mathbb{R}^d)$, $m \ll d$.
- ii. Clustering, for each x_i , assign cluster label, $z_i \in \{1,2,3...K\}$
- iii. Representation learning, $z \in \mathbb{R}^m$, $z = f_{\theta}(x)$, or $z \sim p_{\theta}(x)$.
- iv. Density estimation, evaluate $p_{\theta}(x)$.
- v. "Generative" modeling, $x \sim p_{\theta}(x)$

e.g. of Dimensionality reduction

Single-cell transcriptomics (single-cell RNA sequencing): samples are cells, features are genes.

Zeisel et al. (2018) $n \approx 500,000$

e.g. of Dimensionality reduction

Novembre et al Nature 2008

$$x \in \mathbb{R}^3 = [x, y, z].$$

But could uniquely describe each point with just 2 *coordinates*.

The "manifold hypothesis"

- "High dimensional data tend to lie in the vicinity of a low dimensional manifold." e.g. [Fefferman 2013]
- Manifold: roughly speaking, a space that locally feels like a Euclidean space.
- For us: a manifold is a lower dimensional part of the observation space in which the data tend to lie.
- "embedding the data in a lower dimensional manifold", or "an embedding of the data".

- 5000 faces, $x_i \in \mathbb{R}^{32 \times 32 = 1024}$
- How low a dimension do you think we can go and still "keep" the image?
- Turns out we can go down to ~100 from the "ambient" 1024 dimensions!
- Trick: carefully create 100 special "basis" images.
- Principal Components Analysis (PCA) will yield the PC basis vectors.

PCA "basis" images, $x \in \mathbb{R}^{1024}$

original faces, $x \in \mathbb{R}^{1024}$

approximate faces, $x' \in \mathbb{R}^{100}$

Why might we want to reduce dimensionality?

- Visualization, e.g. 2D plots.
- To denoise the data, or remove systematic artifacts (big one in biology).
- To compress the data (e.g. audio, images).
- To speed up supervised learning, or other analyses.

https://www.nature.com/articles/ncomms14049/figures/3

- Those special faces, "eigenfaces", are the Principal Component basis vectors that PCA yields:
- Look for the direction in the original space that "retains most of the "information," if you project your data down on to it.

• "eigenfaces" are the PCA basis

 Look for the direction in the original space that "retains most of the "information" if you project Direction with lowest your data down on to it.

reconstruction loss, is the direction with maximal variance in the data.

Recursively apply this idea to find 2nd best direction, then 3rd best:

- 2nd direction should be orthogonal to the first... and...
- ... be direction of most variance subject to that constraint.
- What's the maximum number of such directions we can find?

• Each of the 100 eigenfaces was one of these special directions in the original 1024-dimensional image space.

Is this starting to remind you of anything?

Diagonalizing a MVG ("sphering")

- To sphere a MVG is to make all its contour lines be spheres (also called "whitening").
- Thus we need to make the ellipses look like spheres.
- To do this, we need to understand how to diagonalize a matrix.

<u>Can be derived</u> with MLE for params μ, W , assuming $p(x \in \mathbb{R}^d) = N(\mu + xW; I\sigma^2)$, for $\sigma^2 \to 0$ and $W \in \mathbb{R}^{d \times k}$.

Recall: to diagonalize a MVG distribution, we made use of a special factorization of its covariance matrix, $A = QDQ^T$, an "eigen" or "spectral"-decomposition:

Can use this to do PCA.

(Even if data are not Gaussian).

PCA overview

Intuitively: pretend our data are Gaussian; compute the MLE ""covariance matrix"; and pick off the directions with the top k eigenvalues (all $\lambda_i \geq 0$ because covariance is PSD).

- Given data matrix, $X \in \mathbb{R}^{n \times d}$.
- Construct, $X^T X \in \mathbb{R}^{d \times d}$ (after mean-centering each feature).
- Apply spectral theorem, $X^T X = Q D Q^T$ to pick off k directions.
- Now approximate this covariance matrix with the "best" low rank approximation to it (rank k).
- Best: lowest "reconstruction loss", and highest variance directions.

Given *n* data points of dimension d, $X \in \mathbb{R}^{n \times d}$, to perform PCA, we:

1. Center the data (make each feature zero mean), $\overline{X} = X - [\overline{x_1}, ..., \overline{x_d}]$. (We will continue on only with the matrix \overline{X}).

Given *n* data points of dimension *d*, $X \in \mathbb{R}^{n \times d}$, to perform PCA, we:

2. Compute the covariance matrix, $\Sigma = \overline{X}^T \overline{X}$.

10

 χ_d

Given *n* data points of dimension d, $X \in \mathbb{R}^{n \times d}$, to perform PCA, we:

2. Compute the covariance matrix, $\Sigma = \overline{X}^T \overline{X}$.

2

*x*₁

3. Compute $\overline{X}^T \overline{X} = Q D Q^T$ to get eigenvectors (aka principal directions).

- This decomposition is typically implemented with a call to "eig" function (linalg package in python), but can also be obtained from "svd".
 - Are the same for PSD matrices, but svd may be more stable.

 χ_d

Given *n* data points of dimension d, $X \in \mathbb{R}^{n \times d}$, to perform PCA, we:

2. Compute the covariance matrix, $\Sigma = \overline{X}^T \overline{X}$.

 x_1

3. Compute $\overline{X}^T \overline{X} = Q D Q^T$ to get eigenvectors (aka principal component axes).

4. Keep the k eigenvectors, $Q_k \equiv Q_{:,1:k}$, with the most variance (highest eigenvalues in D).

-2

 x_d

Given *n* data points of dimension d, $X \in \mathbb{R}^{n \times d}$, to perform PCA, we:

2. Compute the covariance matrix, $\Sigma = \overline{X}^T \overline{X}$.

3. Compute $\overline{X}^T \overline{X} = Q D Q^T$ to get eigenvectors (aka principal component axes).

4. Keep the k eigenvectors, $Q_k \equiv Q_{:,1:k}$, with the most variance (highest eigenvalues in D).

5. Project your points (original, or new ones) down to this subspace, $\overline{X}_k = \overline{X}Q_k \in \mathbb{R}^{n \times k}$, these are your principal components scores.

Final, dimensionality-reduced data is.

- Final, dimensionality-reduced data is $\overline{X}_k = \overline{X}Q_k \in \mathbb{R}^{n \times k}$.
- What if we wanted our data in the original dimension (*d*), but with only the information retained from our PCA-k analysis? (e.g. reconstructed faces)
- We need to "reconstruct" the original points. We can do this by expanding back from PCA basis to original basis, but with only the first k PCA basis vectors, $\overline{X}_{recon-k} = \overline{X}_k Q_k^T = \overline{X} Q_k Q_k^T \in \mathbb{R}^{n \times d}$

- Final, dimensionality-reduced data is $\overline{X}_k = \overline{X}Q_k \in \mathbb{R}^{n \times k}$.
- What if we wanted our data in the original dimension (d), but with only the information retained from our PCA-k analysis? (e.g. reconstructed faces)
- We need to "reconstruct" the original points. We can do this by expanding back from PCA basis to original basis, but with only the first k PCA basis vectors, $\bar{X}_{recon-k} = \bar{X}_k Q_k^T = \bar{X} Q_k Q_k^T \in \mathbb{R}^{n \times d}$
- Now we talk about the "reconstruction loss", as the difference between original and reconstructed data, $\|\overline{X}_{recon-k} \overline{X}\|_{F}$.
- The larger the reconstruction loss, the more information we have lost.

and Frobenius norm as

 $\|X\|_F = \sqrt{\sum_{ij} X_{ij}^2} = \sqrt{\operatorname{tr}(X^ op X)} = \sqrt{\sum s_i^2},$

where s_i are singular values of X, i.e. diagonal

Original, and reconstructed faces

original faces, $x \in \mathbb{R}^{1024}$

reconstructed faces

PCA: % variance explained to help pick hyper-parameter, k

If you normalize the eigenvalues in *D* by their sum, then they correspond to % variance explained.

https://stats.stackexchange.com/questions/133451/is-there-any-required-amount-of-variance-captured-by-pca-in-order-to-do-later-an

PCA: reconstruction loss and % variance

projection variance $Var(\lambda)$.

Example of PCA $\begin{array}{c} X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \end{bmatrix} \quad d = 2 \\ h = 4 \\ \end{array}$ א, א

Example of PCA $\begin{array}{c} X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ -2 & -4 \end{bmatrix} \quad d = 2 \\ h = 4 \\ h =$ ン、 ン、 =>X=X mean [0 0] each Linorson

Example of PCA $\begin{array}{c} X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ -2 & -4 \end{bmatrix} \quad d = 2 \\ h = 4 \\ h =$ $X' X'_{2}$ $X^{T} X = \begin{bmatrix} 1 & 2 & -1 & -2 \\ 2 & 4 & -2 & -4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ -2 & -4 \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$

Example of PCA $X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ -2 & -4 \end{bmatrix}$ linely. Cig $(X^T X)$ = regenvalues 500א, א, $X^{T}X = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}$

Example of PCA $X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ -1 & -2 \\ -2 & -4 \end{bmatrix} \text{ linely. eig}(X^T X)$ $\Rightarrow \text{ eigenvalues} \begin{bmatrix} 5c \\ 4 \\ cigen vectors \\ X, X, \end{bmatrix}$ 70 X X = 5 40 \ 0.477 120 0.894

X= nxd Х, 0.477

Example of PCA (take 2, noisy data) $= \begin{bmatrix} 1.07 & 2.16 \\ 2.05 & 4.1 \\ -0.93 & -2.03 \end{bmatrix}$ = eigenvalues $\begin{bmatrix} 50 & 0 \end{bmatrix}$ X= ' nxd 52.30 0.0055 Cigen -2 С, 7 0.894

Linear algebra for PCA

- Need to compute the principal axes, Q, of $\overline{X}^T \overline{X} = Q D Q^T \in \mathbb{R}^{d \times d}$.
- This is an *eigendecomposition* of the matrix $\overline{X}^T \overline{X}$.
- Computing its eigendecomposition has time complexity $O(d^3)$.
- What if $d \gg n$? e.g., images of $d = 100 \times 100 = 10^4$ pixels, and n = 1,000 images.
- Could we do something cheaper?
- Yes. Need to understand the SVD.

 $X \in \mathbb{R}^{n \times d}$

Linear algebra for PCA

Recall the spectral theorem (principal axis theorem) from MVG lecture, which gives a *spectral (eigen) decomposition*.

• The covariance matrix for PCA, $\overline{X}^T \overline{X}$, is symmetric (and PSD).

 $\bar{X} \in \mathbb{R}^{n \times d}$

 It turns out, there is a generalization of the spectral decomposition, for non-symmetric and non-square matrices, the SVD that will be helpful.

Can think of M as linear transformation broken down into three steps, by looking at its effect on the unit disc and the two canonical unit vectors e_1 and e_2 :

- 1. Left: V^T rotates the disc and unit vectors.
- **2.** Bottom: Σ stretches scales axes by $\sigma_i = \Sigma_{i,i}$ (singular values).
- 3. Right: U performs another rotation.

Can be applied to any matrix *M*.

 $r = rank(M) \\ \leq \min(m, n)$

Can think of M as linear transformation broken down into three steps, by looking at its effect on the unit disc and the two canonical unit vectors e_1 and e_2 :

- **Left:** V^T rotates the disc and unit vectors.
- **Bottom:** Σ stretches scales axes by $\sigma_i = \Sigma_{i,i}$ 2. (singular values).
- **Right: U** performs another rotation. 3.

Can be applied to any matrix M.

- Has time complexity $O(m^2n + mn^2)$.
- Σ is unique (if in descending order), but V and U are generally not: e.g. sign flips.
- (Eigendecomposition is unique if all eigenvalues are unique)
- If M is square+symmetric, yields the spectral decomposition.

https://en.wikipedia.org/wiki/Singular value decomposition

- Columns in *U* are the eigenvectors of MM^T , called the *left singular vectors of M* $(MM^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma^2 U^T).$
- Columns in V are the eigenvectors of $M^T M$, called the *right singular vectors of M* $(M^T M = V \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T).$
- Both spectral decompositions at once!
- Eigenvalues are the same, given by $\lambda_i = \Sigma_{i,i}^2$ (Σ_i , i are the *singular values* of M):

Since v_i is an eigenvector for $M^T M$, it follows that $M^T M v_i = \lambda_i v_i$. It follows that...

 $\succ \dots (MM^T)Mv_i = \lambda_i (Mv_i) \text{ thus } Mv_i \text{ is an}$ eigenvector for MM^T with eigenvalue λ_i ! Can be applied to any matrix *M*.

- Recall this example with $d \gg n$,e.g. $d = 10^4$ pixels, n = 1000 images.
- How can we make use of what we just learned to do PCA faster than the eigendecomposition $O(d^3)$?
- Instead of spectral decomposition of $X^T X$...
- ...directly use SVD of the data matrix: $SVD(X) = U\Sigma V^T$
- SVD has time complexity $O(dn^2)$.
- $V \in \mathbb{R}^{d \times d}$ are the needed eigenvectors for $X^T X \in \mathbb{R}^{d \times d}$.
- $\lambda_i = \Sigma_{i,i}^2$ are needed eigenvalues.

 $Xv_i = \sigma_i u_i$

For PCA we want projections onto top k PCs.

- When we used a spectral decomposition, $X^T X = QDQ^T$, we compute: $X_k = XQ_k \in \mathbb{R}^{n \times k}$ (Q are eigvecs of $X^T X$).
- <u>When using the SVD of *X*</u>, we can instead get this from:
- $X_k = XV_{:,1:k} = U_{:,1:k} \Sigma_{1:k,1:k} \in \mathbb{R}^{n \times k}$ ("scores" in PCA basis).
- We don't need to compute covariance matrix, or do the projections, we just need SVD(X)!

"Eckart Young theorem" 1936

- The SVD "k-reconstruction" produces the best k-rank approximation by the matrix norm, $||X X_{recon-k}||_F$.
- First proven by Schmidt (of Gram-Schmidt fame) in 1907 for Froebenius norm.
- Later rediscovered by Eckart & Young 1936, also generalized to other norms..
- <u>Thus, PCA provides the best low rank approximation to the data</u> <u>matrix.</u>

$$\|\mathbf{A}\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}$$

Practicalities: Reduced SVDs

For PCA and other applications, don't need the entire SVD, and can make do with "trimmed down" versions:

- 1. Full SVD
- 2. Thin SVD (remove columns of U not corresponding to rows of V*)
- 3. Compact SVD (remove vanishing singular values and corresponding columns/rows in U and V*),
- 4. Truncated SVD (keep only largest t singular values (and corresponding columns/rows in U and V*)

PCA is not linear regression

PCA from neural networks!

- Special kind of neural network, called an *autoencoder* recovers the same subspace as PC-k.
- Autoencoder tries to compress a data set by trying to predict itself back after going through a bottleneck.

- For a linear autoencoder with one hidden layer containing k nodes, using squared loss, the hidden layer representation is equivalent to that found from PCA-k (although W may correspond to different eigenvectors that span the same space).
- Can generalize by making non-linear transfers, and more layers, etc.