CS 189/289

Today'’s lecture outline

1. Finish Transformers

2. Unsupervised learning, dimensionality reduction
3. PCA

CS 189/289

Today'’s lecture outline

1. Finish Transformers

Recall: RNN bottleneck problem

all information about the
conditioned sequence is

contained in these activations A e pupy <05
Yil Yi2 Yi,3 YiA4
tt t 1

1 1
a alz a/3 a a2 Cl3 a4

t t t t How can we do this?
i1 Ti2 ;3 Yi,0 Yi,l Yi2 Yi3
mignon chiot Un <START> A cute puppy
I[dea: what it we could somehow “peek” at the source

sentence while decoding?
Attention to the rescue!

Recall: Is Attention All \Ne Need?

Iaf

e |f we have attention, do we even ”f“f““ \
need recurrent connections? 61 ‘?2 ¢ - T;
e Can we transform our RNN into a C? O o
purely attention-based model? B BAdle & &

This has a few issues we must overcome:

Decoding position 3 can’t access s; or So- hig ho e hy — 5055 8155 82 53

Solution: self-attention. R ST S S S S

Ti1 Ti2 T3 Yi0 Yil Yi2 Yi3
migncn chiot Un <START= A cute pUppy

Recall: Self-Attention

A keep repeating until we’ve
= processed this enough

= then hand off to next part of overall
= model

self-attention “layer”

ttr tt ot

aq

T

4

@:Q\@.)% totot
| B = e
| softmax ___’| AL
€1,1 €1,2 €1,3 j‘> ai
N Y T

ko QQi ks QSi
Nt/ AL/
as as
t t

self-attention “layer”

ttt ottt

t ot t
AN VN b o ol
Nt/
h h h
1 2 3 hl
f f f f
X1 i) I3 I

ko QZi k3 QSi

Nt/ \t/
ha hs
f f

X2 xr3

From Self-Attention to Transformers

* Self-attention lets us remove recurrence entirely, yielding the now
pervasively used Transformer model for sequences.
» But we need a few additional components to fix some problems:

1. Positional encoding addresses lack of sequence information

2. Multi-headed attention allows querying multiple positions at each layer
3. Adding nonlinearities so far, each successive layer is linear in the previous one
4. Masked decoding how to prevent attention lookups into the future?

Positional encodin

o0: what is the order?

a1 what we see:

he hit me with a pie

CES
—_—
~© ©) i :
& what naive self-attention sees: hit — with me
pie he ¢

/ A A /u
22! X2 3
I B |, a pie hit me with he
| softmax | a hit with me he pie . S
€11 €1 €1 3 P Permutation Equivariant!
N’ q’(\l" he pie me with a hit

ki1 41 U1 ko G2 V2 k3 G3|U3

Nt/ \ 1t/ Nt/ Idea: add “positiona

h1 ho ha in the sequence!
h’t — f(ajta t)

t t t X
L1 L2 L3 some function

|II

information, i.e. that indicates where it is

Positional encoding: what is the order?

aq
®
< - sin 2¢1/d\ -
(t/100002*1/4)
K/q @ /Q cos(t/10000%*1/4)
I o o a3 sin(t/10000%*2/4)
[mmm [,), = | cos(£/1000022/4)
| softmax |
€1,1 €1,2 €1,3 sin(t/100002*2/4)
V\%%\L | cos(t/10000%5/4) |

\

d, is the dimensionality of
positional encoding

ki1 41|01 ko 42 V2 k3 (3 |U3

Nt/ Nt/ Nt/

h1 ho hs
ht — f(ajta t)

t t t A
X1 L2 L3 some function

From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very
powerful type of sequence model, called a transformer

 But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

1. Positional encoding

2. Multi-headed attention

3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?

Multi-head attention

|[dea: have multiple keys, queries, and values for every time step!

@ tull attention vector formed by concatenation:
a2.1
Ao = 012’2
- a273 -

compute weights independently for each head

erti =qri- ki

/_\
k11491,1Y11 kei1492,1V21 ksi 43,1 V3,1

vt a1, oats i =explen)/ Y explens)

hi ho hs api = Z Q0 t iVt g
' ' ' around 8 heads seems to work
e T2 3 pretty well for big models

From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very
powerful type of sequence model, called a transformer

 But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention

3. Adding nonlinearities

4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?

Self-Attention is Linear

ai

!
$
@“Q\@ O

/ A A / A
I o o) a3
| | I | »
| softmax |
€1,1 €1,2 €1,3

ki1 41|01 ko 42 V2 k3 (3 |U3

Nt/ Nt/ Nt/

a

E Ofl,tht
t

Fvery self-attention “layer” is a linear
transtformation of the previous layer

Alternating self-attention & non-linearity

self-attention “layer”

ttt ttt t1

T
ki a1 o1 ko a2|02 ks a3vg
/

\t /o Nt/ At

hi h i some non-linear (learned) function
f f T« 00 /

. s . e.g., ht = o(Wta! + b*)

t f t

self-attention “layer” _jUSJ[a ﬂeura| ﬂet apphed at e\/ery
tot tt ot ottt » .
ky cn. by 2[v2 ks as|vs position after every self-attention layer
\t/ Xt/ ANt/
Iy h) b
t 4 t
1 L2 I3

From Self-Attention to Transformers

 The basic concept of self-attention can be used to develop a very
powerful type of sequence model, called a transformer

 But to make this actually work, we need to develop a few additional
components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one

how to prevent attention lookups into the future?

Self-attention can see the future!

e.g. self-attention “language model”: t

Problem:
« Step 1 can look at future values (hence inputs).
« At test time ("decoding”), the output at step 1
will see the input at step 2 ...
 Also cyclic: output 1T depends on input 2 which
depends on output 1.
SO it can see itself, thereby “cheating”.

—00 otherwise

Solution: ey ¢ = { q ke i t<1

Now we are read for
The Transformer!

Seqguence-to-sequence with selt-attention

self-attention “layer”

t t 1 tt t t 1
ki @101 ko 92V k3 03
Nt/ Nt/ N\t

h? G2 hi

T

ai

T

T

az

T

self-attention “layer”

tt bttt

k1 Chw ko Q2w ks
Nt/ 4 \
Iy h

f

X1

f

o)

“Transformer” architecture:

» Stacked self-attention layers with
position-wise nonlinearities.

» Transform one sequence into
another at each layer.

* For sequence data.

[Vaswani et al. Attention Is All You Need. 2017]

Ssawlil N paileadau

1 1
1 1
1 1
1 1
“ 5 — 3
S = 3 2 hamt
“ e 2 c < s) .
| of — E =8 | B S pamyabd
I 2 < < 0 =Y
I Y) 9) K% I
B _H —=
| : | | ™
“H E s P
. - = = 5 = — 3
mAw S — 2 = 8 m Alm m
1 1
1 1
b e e e d
| e EEEEmm———]
1 1
I — 1
. | : g
r “ C w on I“
5 m : i 5 e
= “ 2 2 DENF
wn “ = =" DV
(- I _ c
o~ G | 5 N — g
O S “ "M =
q = “ 3
% | = m
1 1
(- ! I
- o ! sowli} N paieadal :
Q) ._m b e e e A
(- <D
44—
| ©
e
L ¢
h T —
O - > I — S
1
O & m t m
O o5 “ |
O 2 S-S g
1
5 2 m t S
1
() C v S-S O
1
J B0 | f m
o 1
Q |me avb — WSl - S
e L e dal L -
T 52 2 ol
O <2 Bl
O = o ~i 8
& Ol «— 3 | ©
C = 0 “ 1 Pg
r I s
1 -

Recall: batch normalization

"Vanishing gradient” from saturating non-linearities

RelU

4444444444

Activation functions saturating (problem amplified by depth)—
fixed with normalizations (e.g. "batch normalization”).

1. Normalize data in the mini-batch 2 Add scale and shift parameters, y, B:

zW) — E|zD] KD = g(yzD + B)

Zﬁ) =
JVar[zM]

From batch to layer normalization

« Batch normalization tricky in sequence models:
long sequences have small batches/poor stats. !

 Layer normalization: multi-headed attention
vectors for one position in a layer are stacked
together to form vector a, over which mean &

== =
ki1G1,1Y11 key 92,1021 k3g 93,1 V3,1

std. dev. are computed for one sample. N I
* Layer normalization is independent of the 2 o hs
batch size. t t t
D - zM — E[zV] KD = g(yzD + B)

JVar[zM]

ranstormers pros and cons

Downsides:
- Attention computations are theoretically* O(n?).
- Somewhat more complex to implement (positional encodings, etc.)

Benefits:
+ Better long-range connections (compared to RNN).

+ *Much easier to parallelize.
+ In practice, can make it much deeper (more layers) than RNN.

CS 189/289

Today'’s lecture outline

2. Unsupervised learning, dimensionality reduction

Unsupervised learning

e So far: supervised learning, {(x;,y;)} forx e R® andy € Rory € Z.

« Often model just {x;}: unsupervised learning, includes:

.. Dimensionality reduction, z € R™ = fa(x € R%), m < d.

il. Clustering, for each x;, assign cluster label, z; € {1,2,3 ... K}
ili. Representation learning, z € R™, z = fg(x), or z~pg(x).
iv. Density estimation, evaluate pg(x).

v. "Generative” modeling, x~pg(x)

e.g. of Dimensionality reduction

Single-cell transcriptomics (single-cell RNA sequencing): samples are cells, features

are genes.

A Central Nervous System

Cortex

1 sterior
Olfactory Bulb a"‘e”"':fiﬂe -

P/
H

Hypothalamus

ippocampus
Thalamus

Midbrain ;
Ce Spinal

i Peripheral
e ra
Nerv: sgystem
Dorsal Root Ganglion

Sympathetic Chain

Enteric Nervous System

Myenteric Plexus
Muscle Layer

Astroependymal cells

Cerebellum neurons

Cholinergic, monoaminergic, peptidergic
Di- and mesencephalon neurons
Enteric neurons

Hindbrain neurons

Immature neural

Immune cells

Neural crest-like glia
Oligodendrocytes

Peripheral sensory neurons
Spinal cord neurons

Sympathetic neurons
Telencephalon interneurons
Telencephalon projecting neurons
@ Vascular cells

Zeisel et al. (2018)
n = 500,000

e.g. of Dimensionality reduction

[+‘ ITIT
T Vol IT

IIUE';‘]' Fﬂ
W
Ay

Novembre et al Nature 2008

What dimensionality do these points live in?

Al

YV,
But could uniquely describe each

)

x € R® =[x

10 'Obﬂ?érO%a ,g&f

The “manifold hypothesis” g 5
- —2?)% = &o 2‘0% ..ﬁ4o -

* "High dimensional data tend to lie in the vicinity
of a low dimensional manifold. e.g. [Fefferman 2013]

* Manitold: roughly speaking, a space that locally feels
like a Euclidean space.

«For us: a manitold is a lower dimensional part of the
observation space in which the data tend to lie.

» "embedding the data in a lower dimensional manitold”,
or "an embedding of the data”.

What dimensionality do these points live in?

* 5000 faces, x; € R32*x32=1024

* How low a dimension do you think we
can go and still “keep” the image?

* Turns out we can go down to ~100 from
the "ambient” 1024 dimensions!

e Trick: carefully create 100 special "basis”
Images.

K Principal Components Analysis (PCA) will
o Vield the PC basis vectors.

What dimensionality do these points live in?

PCA “basis” images, x € R*0%*

What dimensionality do these points live in?

approximate faces, x' € R10Y

Why might we want to reduce dimensionality?

* Visualization, e.g. 2D plots. - 4 core,
CO44/CO25+ Aeg T @ 4

* To denoise the data, or remove ﬂmmmm?r
systematic artifacts (big one in
biology).

* o compress the data (e.g. audio,
iImages).

b P
i g -._ :f
T - <
EEE IED!E Hu e R | hr':_'

» To speed up supervised learning, [N oo coscorsmi/

or other analyses.

Principal Components Analysis (PCA)

» Those special faces, "eigenfaces’, are the Principal Component basis
vectors that PCA vyields:

* Look for the direction in the original space that “retains most of the
”in‘ormatioﬂif you project your data down on to it.

7

10}

o =)] w £ o (o)] ~_ [} o
T T T T T T T T T T

Principal Components Analysis (PCA)

* "eigenfaces” are the PCA basis

* Look for the direction in the original space that
"retains most of the “information” it you project Direction with lowest
your data down on to it. reconstruction loss, is the
direction with maximal

—
(=)
T

variance in the data.

o =)] w £ o (o)] ~_ [} o
T T T T T T T | a— T T

o - M w B w (o] ~_ el
T T T T T T T I T

Principal Components Analysis (PCA)

Recursively apply this idea to find 29 best direction, then 3@ best:

« 2nd direction should be orthogonal to the
first... and...

e ... be direction of most variance subject
to that constraint.

e \What's the maximum number of such
directions we can find?

Principal Components Analysis (PCA)

* Each of the 100 eigenfaces was one of these special directions in the
original 1024-dimensional image space.

(=) == N w E w [o)] ~l @ © (=]
T T T T T T T T T T

Principal Components Analysis (PCA)

|s this starting to remind you of anything?

Diagonalizing a MVG (“sphering”)

—_
(=]
T

* To sphere a MVG is to make all its contour lines be spheres (also
called "whitening”).

* Thus we need to make the ellipses look like spheres.

« To do this, we need to understand how to diagonalize a matrix.

original data decorrelated data whitened data

(=) == N w E w ()] ~l @ [{e]
T T T T T T T T T T

Can be derived with MLE for params u, W, assuming
p(x € RY) = N(u+xW;Io?), for 6% - 0 and W € RY*k,

Principal Components Analysis (PCA)

Recall: to diagonalize a MVG distribution, we made use of a special
factorization of its covariance matrix, A = QDQ?, an "eigen” or

"spectral”’-decomposition:

Linear Algebra: Diagonalizing a matrix
When A s symmelvic A=AT

A= QDQT Wit r_e_a\ eiaeﬂva\ues v D

amel oriovioymal WetioE v

\ Pis an O¥inonorma) mednax

Spectral theorem:

A= QDP

$=q
(5 95 %]

10“, / awb-’h)o

is are 0hogonal

S
Q = C\) | jaa]{i:‘ y}t\i P
v é/(YleD‘”S frefieckions) T e o ol and W

Can use this to
do PCA.

(Even if data are
not Gaussian).

PCA overview

Intumvely oretend our data are Gaussian, compute the |
‘covariance matrix”; and pick off the directions with the top k
eigenvalues (all A; = 0 because covariance is PSD).

- Given data matrix, X € R™**¢
e Construct, XTX € RX4 (after mean-centering each feature).
« Apply spectral theorem, XTX = QDQ' to pick off k directions.

* Now approximate this covariance matrix with the “best” low rank
approximation to it (rank k).

* Best: lowest “reconstruction loss”, and highest variance directions.

PCA step-by-step

Given n data points of dimension d, X € R™¢, to perform PCA, we:

1. Center the data (make each feature zero mean), X = X — [xq, ..., Xq]. (We
will continue on only with the matrix X).

10}

—_
(=]
T T

=
Q
o - N w E-N o [o)] ~J @ [le] o
4
L)
=
g 280
s
L 3o
4@3.‘
* . '."
o ® (X
* % .Jo‘ b4
r o’ .:o P o2 .
. 0:0‘ :.‘
A P
d e, °*
.° !o S
L 0 ® .oo.
¢ L}
— n w E=N 4] (o] ~J [0 [{e]

PCA step-by-step

Given n data points of dimension d, X € R™¢, to perform PCA, we:

2. Compute the covariance matrix, ~ = X'X.

PCA step-by-step
Given n data points of dimension d, X € R™¢, to perform PCA, we:

2. Compute the covariance matrix, ~ = X'X.
3. Compute XTX = QDQ" to get eigenvectors (aka principal directions).

10'»

* This decomposition is typically implemented with a
call to "eig" function (linalg package in python), but

can also be obtained from "svd".
* Are the same for PSD matrices, but svd may be

more stable.

PCA step-by-step

Given n data points of dimension d, X € R™*¢, to perform PCA, we:
2. Compute the covariance matrix, ~ = X'X.

3. Compute XTX = QDQ" to get eigenvectors (aka principal component axes).

10F

o 4. Keep the k eigenvectors, Qx = Q. 1., with the most
* variance (highest eigenvalues in D).

PCA step-by-step

Given n data points of dimension d, X € R™¢, to perform PCA, we:

2.
3.
4.

Compute the covariance matrix, 2 = X' X.

Compute XX = QDQT to get eigenvectors (aka principal component axes).

10F

4. Keep the k eigenvectors, Qx = Q. 1., with the most
variance (highest eigenvalues in D).

[(=]
T

5. Project your points (origin

2 OFFEwW ones) down to
this subspace, X;, = XQy, ¢ hese are your

principal components scores.

=
Q

45
A
Of = N W A~ o N ®
T T T T T T T T

data is.

Final, dimensionality-reduce(

8|
7 x 5
6 d dt
5 al
|) 0 .
2+
. 3 Y
C Ste b Ste '.. .:’:‘ :'..."‘:.2 . -\\\]‘
' 1"‘& 2 ."?":2.‘? v - }‘\
Tl
SEHRRE

Final, dimensionality-reduced data is X, = XQ, € R™*¥.

What if we wanted our data in the original dimension (d), but with only the
information retained from our PCA-k analysis? (e.q. reconstructed faces)

We need to “reconstruct” the original points. We can do this by expanding
back from PCA basis to original basis, but with only the first k PCA basis

vectors, Xreconi = XxQF = XQ,QF € R™*4 _

f\)(/c/ e m | \j T

I W

l

/ 1
dxle yank K<

PCA step-by-step

Final, dimensionality-reduced data is X, = XQ, € R™*¥.

What if we wanted our data in the original dimension (d), but with only the
information retained from our PCA-k analysis? (e.g. reconstructed faces)

We need to “reconstruct” the original points. We can do this by expanding
back from PCA basis to original basis, but with only the first k PCA basis
vectors, Xrecon k — Xka — XQka < RnXd

Now we talk about the “reconstruction loss”, as the difference between
original and reconstructed data, || Xrecon—r — X || .

The larger the reconstruction loss, the more
information we have lost.

and Frobenius norm as
v T
1 XIlp = \/Z X2 =/u(x'X) = /35,
?-j

where s; are singular values of X, i.e. diagonal

Original, and reconstructed taces

reconstructed faces
original faces, x € R19%4 x' € R0 - x, € R10%%
-] = - v T e
- Nir vl avfl -
g i\=8 s B
g AN wiv s -ﬂ-a
L= e

PCA: % variance explained to
help pick hyper-parameter, k

4 -

Eigenvalue

w
1

N

—

35%

il 35%

48%

59% 7%
75% 19

86%
91% 0
94 " 98 % 100%

4%

D|m1 D|m2 D|m3 D|m4 D|m5 D|m6 D|m7 anre\ D|m9 D|m10 D|m11.7

— T
Vx> Q0@
T you normalize the
eigenvalues in D by their
sum, then they

correspond to % variance
explained.

\/e: D
(— b(u

PCA: reconstruction |

15 50
Reconstruction error
Projection variance
10
40
5
30
> 0
20
=5
10
-10
-15 0
=15 15 05 10 15 20 25

by

Fig.5. We rotate basis vector b and project data on corresponding subspace, then calculate reconstruction error L and
projection variance Var(A).

0ss and % variance

rLT

oL
-2 -4)

I A l

Examp\e of PCA

o= A

="

Example of PCA

X,

nx o

h\qﬁ“’\
eﬁdL

B

-1 -L
- ""IJ

[0 o]

c[(TGN

o= A

="

Example of PCA

X,

nx o

&

doxd

-2 ""I)

B

o -l

o= A

="

G+ o
A
l [(|]
T T — : ~
‘..a\.l '“Z 1 z L’ 76/
@ 1 -2 ¢
o T
_—
_ 10 Qo
K Lo "fo

Examp\e of PCA

X= |2
nx o 2 Y
o -L
-2 "I’l)
XAl
r,_ [0
V7Y 2 1o
3,4 k‘Lo Yo

Example of PCA

X =

nx o

TR

-1 -L
- L ""IJ
)(7(L

10

Lo

[inel c:?(X X)

= @aef\v«lw. j

1o
Yo

EXam
r|o\e of PCA

X [

nx o 2 L1
- -L

.- -MJ i @"?}’h\/e(){?h’_)

/

rLW

pl
L

—
|0

Lo

-

[l L CI

1o
Yo

Exa&rgp\ze/;of PCA (ta|<7¢ 2, noisy data) 7
v\xxf vos 4| iney. ¢ia (X X) N izf’.

/NG

o7

-
>

nx o

X =]RnXd

Linear algebra for PCA

» Need to compute the principal axes, Q, of XTX = QDQT € R%*4.

e This is an eigendecomposition of the matrix XTX.

« Computing its eigendecomposition has time complexity 0(d?).

« Whatifd >» n?e.gq., images of d = 100 x 100 = 10* pixels, and
n = 1,000 images.

» (Could we do something cheaper?

 VYes. Need to understand the SVD. loo
2 /1 10Ydim wapoy
| oo

X =]RnXd

Linear algebra for PCA

Recall the spectral theorem (principal axis theorem) from MVG
lecture, which gives a spectral (eigen) decomposition:.

e The covariance matrix

When A is symmelvic T
A= QD" i real elgenmalues i1 D
\ avdl orinovioyma et in S=Q

for PCA, XTX, is
symmetric (and PSD).

s B S R, S Yo | e [t turns out, there is a
« R : :
) & g generalization of the

Q—‘: q)f Lo IS e 0 dhogonal

o\ Qg T spectral decomposition,
) ,/C‘””*“”“’"‘S*“‘%‘”m) T el for non-symmetric and

A- PP non-square matrices,
the SVD that will be

helpful.

Singular Value Decomposition (SVD)

Can think of M as linear transformation broken Can be applied to any matrix M.
down into three steps, by looking at its effect on the

1.
2.

3.

and the two canonical unit vectors =, and e,: ‘ ‘ ‘ ‘ ‘ | Mv, = 211wy
Left: VTrotates the disc and unit vectors. o Mv; = 235U,
Bottom: Z stretches scales axes by o; = ; ; y | V*
(singular values). mx mxm mxn nxn MV =2ty
Right: U performs another rotation.
r = rank(M
— "2\4 < min((m,)n)

=[]

vV U

Y — WS

M=UYX-V*

Singular Value Decomposition (SVD)

Can think of M as linear transformation broken Can be applied to any matrix M.
down into three steps, by looking at its effect on the

1.
2.

3.

Left: V' rotates the disc and unit vectors. |
Bottom: Z stretches scales axes by o; = ; ; z VvV’
(singular values). mx mxm mxn nxn
Right: U performs another rotation. ‘ ‘ ‘

and the two canonical unit vectors =, and e,: ‘ ‘ ‘ ‘ ‘ |

1
I

) _u, o u U = I,

8] e — [
)] =M |[7?| = vzv* 7] HvH - L

« Has time complexity O(m?*n + mn?).

\ — S « X (s unique (if in descending order), but V and U are
generally not: e.q. sign flips.
M=UX-V* » (Eigendecomposition is unique if all eigenvalues are uniqgue)

« If M is square+symmetric, yields the spectral decomposition.

Singular Value Decomposition (SVD)

» Columns in U are the eigenvectors of MMT, Can be applied to any matrix M.
called the left singular vectors of M
MMT = UsVTVETUT = uz2uT) ‘ ‘ ‘ ‘ ‘ |

 Columns in V are the eigenvectors of MT M, s VvV
called the right singular vectors of M ”’“ mxm mxn nxn
M™M =VETUTUsVT = v32yT) ‘ ‘

1

* Both spectral decompositions at once! u U =1,
» Eigenvalues are the same, given by ; = £7; ‘ l ‘ T ﬂ
(Z;,1 are the singular values of M): v Vi = |,

> Since v; is an eigenvector for MM, it follows
that MTMv; = A;v;. It follows that...

>(MMT)MUL =)]'i(Mvi) thus MUi IS an
eigenvector for MMT with eigenvalue A;!

X € Rnxd

]oo 1001
- 10% dim Wroy

oo

Singular Value Decomposition (SVD)

 Recall this example with d > n ,e.g. d = 10* pixels, n = 1000 images.

« How can we make use of what we just learned to do PCA faster than the
eigendecomposition 0(d?)?

* Instead of spectral decomposition of X7 X ...

e _.directly use SVD of the data matrix: SVD(X) = UXVT

 SVD has time complexity 0(dn?). ‘

« V e R*4re the needed eigenvectors for XX € R4*4,

+ A; = Xf; are needed eigenvalues.

i

M= U Vv
mxn

M=M MmM=xN NxnN

Singular Value Decomposition (SVD) ‘M =U|P}w

m=n mxm mxn nxn

For PCA we want projections onto top k PCs.

« When we used a spectral decomposition, X*X = QDQT, we
compute: X, = X0, € R™* (Q are eigvecs of XTX).

« When using the SVD of X, we can instead get this from:
* X =XV1g = U 1421110 € R™¥ ("scores” in PCA basis). Xv; = o;u;

« We don't need to compute covariance matrix, or do the
projections, we just need SVD(X)!

"Eckart Young theorem” 1936

* The SVD "k-reconstruction” produces the best k-rank
approximation by the matrix norm, [|X — Xyecon—xll£-

» First proven by Schmidt (of Gram-Schmidt fame) in 1907 for
-roebenius norm.

* Later rediscovered by Eckart & Young 1936, also generalized to
other norms..

 Thus, PCA provides the best low rank approximation to the data
matrix.

IAIlF = \/ Zi‘au“z
i=1 j=1

Practicalities: Reduced SVDs |

For PCA and other applications, don't need the entire
SVD, and can make do with “trimmed down” versions:

1.
2.

2

Full SVD

Thin SVD (remove columns of U not
corresponding to rows of V*)

5

Compact SVD (remove vanishing singular values
and corresponding columns/rows in U and V%),

Truncated SVD (keep only largest t singular values LI
and corresponding columns/rows in U and V*)

M U
Mo
&
M U

nxn

V*

nxXn

V,

rxn

V.

txn

PCA is not linear regression

y < T2
A

X —>y

\“ '11,..., Y

Andrew Ng

PCA from neural networks!

* Special kind of neural network, called an autoencoder
recovers the same subspace as PC-k.

« Autoencoder tries to compress a data set by trying
to predict itself back after going through a
bottleneck.

« For a linear autoencoder with one hidden layer containing k nodes, using squared
loss, the hidden layer representation is equivalent to that found from PCA-k
(although W may correspond to different eigenvectors that span the same space).

« (Can generalize by making non-linear transfers, and more layers, etc.

