
CS 189/289
Today’s lecture outline

1. Finish Transformers
2. Unsupervised learning, dimensionality reduction
3. PCA

CS 189/289
Today’s lecture outline

1. Finish Transformers
2. Unsupervised learning, dimensionality reduction
3. PCA

Recall: RNN bottleneck problem

<START> A cute puppyUnchiotmignon

A cute puppy <EOS>

all information about the
conditioned sequence is
contained in these activations

Idea: what if we could somehow “peek” at the source
sentence while decoding?
Attention to the rescue!

𝑎′ଵ 𝑎′ଶ 𝑎ᇱଷ 𝑎ଵ 𝑎ଶ 𝑎ଷ 𝑎ସ

How can we do this?

Recall: Is Attention All We Need?

This has a few issues we must overcome:
• Decoding position 3 can’t access ଵ or ଴.
• Solution: self-attention.

• If we have attention, do we even
need recurrent connections?

• Can we transform our RNN into a
purely attention-based model?

Recall: Self-Attention

self‐attention “layer”

self‐attention “layer”

keep repeating until we’ve
processed this enough

then hand off to next part of overall
model

From Self-Attention to Transformers
• Self-attention lets us remove recurrence entirely, yielding the now

pervasively used Transformer model for sequences.
• But we need a few additional components to fix some problems:

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?

Positional encoding: what is the order?
what we see:

he hit me with a pie

what naïve self‐attention sees:
he

hit me
pie

with
a

a pie hit me with he
a hit with me he pie

he pie me with a hit

Idea: add “positional” information, i.e. that indicates where it is
in the sequence!

some function

Permutation Equivariant!

Positional encoding: what is the order?

some function

𝑑, is the dimensionality of
positional encoding

From Self-Attention to Transformers
• The basic concept of self-attention can be used to develop a very

powerful type of sequence model, called a transformer
• But to make this actually work, we need to develop a few additional

components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?

Multi-head attention
Idea: have multiple keys, queries, and values for every time step!

around 8 heads seems to work
pretty well for big models

From Self-Attention to Transformers
• The basic concept of self-attention can be used to develop a very

powerful type of sequence model, called a transformer
• But to make this actually work, we need to develop a few additional

components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?

Self‐Attention is Linear

Every self-attention “layer” is a linear
transformation of the previous layer

Alternating self-attention & non-linearity

self‐attention “layer”

self‐attention “layer”

just a neural net applied at every
position after every self-attention layer

From Self-Attention to Transformers
• The basic concept of self-attention can be used to develop a very

powerful type of sequence model, called a transformer
• But to make this actually work, we need to develop a few additional

components to address some fundamental limitations

1. Positional encoding
2. Multi-headed attention
3. Adding nonlinearities
4. Masked decoding

addresses lack of sequence information
allows querying multiple positions at each layer
so far, each successive layer is linear in the previous one
how to prevent attention lookups into the future?

Self-attention can see the future!

self-attention “layer”

e.g. self-attention “language model”:

Problem:
• Step 1 can look at future values (hence inputs).
• At test time (“decoding”), the output at step 1

will see the input at step 2 …
• Also cyclic: output 1 depends on input 2 which

depends on output 1.
• So it can see itself, thereby “cheating”.

Solution:

Now we are read for
The Transformer!

Sequence-to-sequence with self-attention

self-attention “layer”

self-attention “layer”

“Transformer” architecture:
• Stacked self-attention layers with

position-wise nonlinearities.
• Transform one sequence into

another at each layer.
• For sequence data.

[Vaswani et al. Attention Is All You Need. 2017]

Encoder-Decoder Transformer

self‐attention

position‐wise encoder

position‐wise nonlinear
network

re
pe

at
ed

 N
tim

es

self‐attention

position‐wise encoder

position‐wise nonlinear
network

cross attention

position‐wise nonlinear
network

re
pe

at
ed

 N
tim

es

Cross-Attention

position‐wise softmax

RNN

Transformer

Encoder Decoder

Similar to the standard (non-self) attention
from the previous lecture

Recall: batch normalization

From batch to layer normalization
• Batch normalization tricky in sequence models:

long sequences have small batches/poor stats.
• Layer normalization: multi-headed attention

vectors for one position in a layer are stacked
together to form vector , over which mean &
std. dev. are computed for one sample.

• Layer normalization is independent of the
batch size.

Transformers pros and cons
Downsides:
- Attention computations are theoretically* O(n2).
- Somewhat more complex to implement (positional encodings, etc.)

Benefits:
+ Better long-range connections (compared to RNN).
+ *Much easier to parallelize.
+ In practice, can make it much deeper (more layers) than RNN.

• Benefits often vastly outweigh the downsides.
• Transformers work much better than RNNs in general.
• One of the most important sequence modeling improvements of the

past decade.
• Can use just encoder, just decoder.

CS 189/289
Today’s lecture outline

1. Finish Transformers
2. Unsupervised learning, dimensionality reduction
3. PCA

Unsupervised learning
• So far: supervised learning, ௜ ௜ for ௗ and or .
• Often model just ௜ : unsupervised learning, includes:
i. Dimensionality reduction, ௠

ఏ
ௗ , .

ii. Clustering, for each ௜, assign cluster label, ௜
iii. Representation learning, ௠, ఏ , or ఏ .
iv. Density estimation, evaluate ఏ .
v. “Generative” modeling, ఏ

e.g. of Dimensionality reduction

e.g. of Dimensionality reduction

Novembre et al Nature 2008

What dimensionality do these points live in?

ଷ .
But could uniquely describe each
point with just 2 coordinates.

Weinberger et al ICML 2004

The “manifold hypothesis”

• “High dimensional data tend to lie in the vicinity
of a low dimensional manifold.” e.g. [Fefferman 2013]

• Manifold: roughly speaking, a space that locally feels
like a Euclidean space.

• For us: a manifold is a lower dimensional part of the
observation space in which the data tend to lie.

• “embedding the data in a lower dimensional manifold”,
or “an embedding of the data”.

What dimensionality do these points live in?

https://mikedusenberry.com/on‐eigenfaces

• 5000 faces, ௜
ଷଶൈଷଶୀଵ଴ଶସ

• How low a dimension do you think we
can go and still “keep” the image?

• Turns out we can go down to ~ from
the “ambient” dimensions!

• Trick: carefully create 100 special “basis”
images.

• Principal Components Analysis (PCA) will
yield the PC basis vectors.

• 5000 faces, ௜
ଷଶൈଷଶୀଵ଴ଶସ

• How low a dimension do you think we
can go and still “keep” the image?

• Turns out we can go down to
dimensions instead of dim!

• Trick: carefully create 100 special “basis”
images.

• Principal Components Analysis (PCA) will
tell us how.

What dimensionality do these points live in?

https://mikedusenberry.com/on‐eigenfaces
PCA “basis” images, ଵ଴ଶସ

What dimensionality do these points live in?

https://mikedusenberry.com/on‐eigenfaces

approximate faces, 𝑥′ ∈ ℝଵ଴଴original faces, 𝑥 ∈ ℝଵ଴ଶସ

Why might we want to reduce dimensionality?
• Visualization, e.g. 2D plots.
• To denoise the data, or remove

systematic artifacts (big one in
biology).

• To compress the data (e.g. audio,
images).

• To speed up supervised learning,
or other analyses. https://www.nature.com/articles/ncomms14049/figures/3

Principal Components Analysis (PCA)
• Those special faces, “eigenfaces”, are the Principal Component basis

vectors that PCA yields:
• Look for the direction in the original space that “retains most of the

“information” if you project your data down on to it.

Principal Components Analysis (PCA)
• “eigenfaces” are the PCA basis
• Look for the direction in the original space that

“retains most of the “information” if you project
your data down on to it.

Direction with lowest
reconstruction loss, is the
direction with maximal
variance in the data.

Principal Components Analysis (PCA)
Recursively apply this idea to find 2nd best direction, then 3rd best:

• 2nd direction should be orthogonal to the
first… and…

• … be direction of most variance subject
to that constraint.

• What’s the maximum number of such
directions we can find?

Principal Components Analysis (PCA)
• Each of the 100 eigenfaces was one of these special directions in the

original 1024-dimensional image space.

Principal Components Analysis (PCA)
Is this starting to remind you of anything?

Can be derived with MLE for params , assuming
 ௗ ଶ , for ଶ and ௗൈ௞.

Principal Components Analysis (PCA)
Recall: to diagonalize a MVG distribution, we made use of a special
factorization of its covariance matrix, ், an “eigen” or
“spectral”-decomposition:

Can use this to
do PCA.

(Even if data are
not Gaussian).

PCA overview
Intuitively: pretend our data are Gaussian; compute the MLE
“covariance matrix”; and pick off the directions with the top
eigenvalues (all ௜ because covariance is PSD).

• Given data matrix, .
• Construct, ் ௗൈௗ (after mean-centering each feature).
• Apply spectral theorem, ் ் to pick off directions.
• Now approximate this covariance matrix with the “best” low rank

approximation to it (rank).
• Best: lowest “reconstruction loss”, and highest variance directions.

PCA step-by-step
Given data points of dimension , ௡ൈௗ , to perform PCA, we:
1. Center the data (make each feature zero mean), ଵ ௗ . (We

will continue on only with the matrix).

𝑥ௗ

𝑥ଵ

𝑥ௗ

𝑥ଵ

Given data points of dimension , ௡ൈௗ , to perform PCA, we:
2. Compute the covariance matrix, ் .

PCA step-by-step

𝑥ௗ

𝑥ଵ

• This decomposition is typically implemented with a
call to “eig” function (linalg package in python), but
can also be obtained from “svd”.

• Are the same for PSD matrices, but svd may be
more stable.

Given data points of dimension , ௡ൈௗ , to perform PCA, we:
2. Compute the covariance matrix, ் .
3. Compute ் ் to get eigenvectors (aka principal directions).

PCA step-by-step

PCA step-by-step

𝑥ௗ

𝑥ଵ

Given data points of dimension , ௡ൈௗ , to perform PCA, we:
2. Compute the covariance matrix, ் .
3. Compute ் ் to get eigenvectors (aka principal component axes).

4. Keep the eigenvectors, ௞ :,ଵ:௞, with the most
variance (highest eigenvalues in).

PCA step-by-step

𝑥ௗ

𝑥ଵ

Given data points of dimension , ௡ൈௗ , to perform PCA, we:
2. Compute the covariance matrix, ் .
3. Compute ் ் to get eigenvectors (aka principal component axes).
4. 4. Keep the eigenvectors, ௞ :,ଵ:௞, with the most

variance (highest eigenvalues in).

5. Project your points (original, or new ones) down to
this subspace, ௞ ௞

௡ൈ௞, these are your
principal components scores.

Final, dimensionality-reduced data is.

• Final, dimensionality-reduced data is ௞ ௞
௡ൈ௞.

• What if we wanted our data in the original dimension (), but with only the
information retained from our PCA-k analysis? (e.g. reconstructed faces)

• We need to “reconstruct” the original points. We can do this by expanding
back from PCA basis to original basis, but with only the first PCA basis
vectors, ௥௘௖௢௡ି௞ ௞ ௞

்
௞ ௞

் ௡ൈௗ

PCA step-by-step

PCA step-by-step
• Final, dimensionality-reduced data is ௞ ௞

௡ൈ௞.

• What if we wanted our data in the original dimension (), but with only the
information retained from our PCA-k analysis? (e.g. reconstructed faces)

• We need to “reconstruct” the original points. We can do this by expanding
back from PCA basis to original basis, but with only the first PCA basis
vectors, ௥௘௖௢௡ି௞ ௞ ௞

்
௞ ௞

் ௡ൈௗ

• Now we talk about the “reconstruction loss”, as the difference between
original and reconstructed data, ௥௘௖௢௡ି௞ ୊.

• The larger the reconstruction loss, the more
information we have lost.

Original, and reconstructed faces

https://mikedusenberry.com/on‐eigenfaces

reconstructed faces
 𝑥ᇱ ∈ ℝଵ଴଴ → 𝑥௞ ∈ ℝଵ଴ଶସoriginal faces, 𝑥 ∈ ℝଵ଴ଶସ

PCA: % variance explained to
help pick hyper-parameter,

https://stats.stackexchange.com/questions/133451/is‐there‐any‐required‐amount‐of‐variance‐captured‐by‐pca‐in‐order‐to‐do‐later‐an

If you normalize the
eigenvalues in 𝐷 by their
sum, then they
correspond to % variance
explained.

PCA: reconstruction loss and % variance

https://towardsdatascience.com/dimensionality‐reduction‐with‐pca‐from‐basic‐ideas‐to‐full‐derivation‐37921e13cae7

Example of PCA

Example of PCA

Example of PCA

Example of PCA

Example of PCA

Example of PCA

Example of PCA (take 2, noisy data)

Example of PCA (take 2, noisy data)

Linear algebra for PCA
௡ൈௗ

• Need to compute the principal axes, , of ் ் ௗൈௗ.
• This is an eigendecomposition of the matrix ் .

• Computing its eigendecomposition has time complexity ଷ .

• What if ? e.g., images of ସ pixels, and
images.

• Could we do something cheaper?

• Yes. Need to understand the SVD.

Linear algebra for PCA
௡ൈௗ

Recall the spectral theorem (principal axis theorem) from MVG
lecture, which gives a spectral (eigen) decomposition:.

• The covariance matrix
for PCA, ் , is
symmetric (and PSD).

• It turns out, there is a
generalization of the
spectral decomposition,
for non-symmetric and
non-square matrices,
the SVD that will be
helpful.

Singular Value Decomposition (SVD)
Can be applied to any matrix 𝑀.Can think of M as linear transformation broken

down into three steps, by looking at its effect on the
unit disc and the two canonical unit vectors e1 and e2:
1. Left: 𝑽𝑻rotates the disc and unit vectors.
2. Bottom: Σ stretches scales axes by 𝜎௜ ൌ Σ௜,௜

(singular values).
3. Right: U performs another rotation.

https://en.wikipedia.org/wiki/Singular_value_decomposition

e2
e1

∗ e2
e1

𝑀𝑣ଵ ൌ Σଵ,ଵ𝑢ଵ
𝑀𝑣ଶ ൌ Σଶ,ଶ𝑢ଶ

…
𝑀𝑣௥ ൌ Σ௥,௥𝑢௥

𝑟 ൌ 𝑟𝑎𝑛𝑘 𝑀
 ൑ min ሺ𝑚, 𝑛ሻ

Singular Value Decomposition (SVD)
Can be applied to any matrix 𝑀.Can think of M as linear transformation broken

down into three steps, by looking at its effect on the
unit disc and the two canonical unit vectors e1 and e2:
1. Left: 𝑽𝑻rotates the disc and unit vectors.
2. Bottom: Σ stretches scales axes by 𝜎௜ ൌ Σ௜,௜

(singular values).
3. Right: U performs another rotation.

https://en.wikipedia.org/wiki/Singular_value_decomposition

• Has time complexity 𝑂ሺ𝑚ଶ𝑛 ൅ 𝑚𝑛ଶሻ.
• 𝛴 is unique (if in descending order), but 𝑉 and 𝑈 are

generally not: e.g. sign flips.
• (Eigendecomposition is unique if all eigenvalues are unique)
• If M is square+symmetric, yields the spectral decomposition.

e2
e1

∗ e2
e1

Singular Value Decomposition (SVD)
• Columns in are the eigenvectors of ்,

called the left singular vectors of M
(் ் ் ் ଶ ்).

• Columns in are the eigenvectors of ் ,
called the right singular vectors of M
(் ் ் ் ଶ ்).

• Both spectral decompositions at once!

• Eigenvalues are the same, given by ௜ ௜,௜
ଶ

(୧ are the singular values of):
Since 𝑣௜ is an eigenvector for 𝑀்𝑀, it follows

that 𝑀்𝑀𝑣௜ ൌ 𝜆௜𝑣௜ . It follows that…
….ሺ𝑀𝑀்ሻ𝑀𝑣௜ ൌ 𝜆௜ሺ𝑀𝑣௜ሻ thus 𝑀𝑣௜ is an

eigenvector for 𝑀𝑀் with eigenvalue 𝜆௜!

Can be applied to any matrix 𝑀.

• Recall this example with ,e.g. ସ pixels, images.
• How can we make use of what we just learned to do PCA faster than the

eigendecomposition ଷ ?
• Instead of spectral decomposition of ் …
• …directly use SVD of the data matrix: ்

• SVD has time complexity ଶ .
• ௗൈௗare the needed eigenvectors for ் ௗൈௗ .
• ௜ ௜,௜

ଶ are needed eigenvalues.

𝑋 ∈ ℝ௡ൈௗ

Singular Value Decomposition (SVD)

For PCA we want projections onto top PCs.
• When we used a spectral decomposition, ் ், we

compute: ௞ ௞
௡ൈ௞ (are eigvecs of ் .

• When using the SVD of , we can instead get this from:
• ௞ :,ଵ:௞ :,ଵ:௞ ଵ:୩,ଵ:௞

௡ൈ௞ (“scores” in PCA basis).
• We don’t need to compute covariance matrix, or do the

projections, we just need !

Singular Value Decomposition (SVD)

“Eckart Young theorem” 1936
• The SVD “k-reconstruction” produces the best -rank

approximation by the matrix norm, ௥௘௖௢௡ି௞ ி .
• First proven by Schmidt (of Gram-Schmidt fame) in 1907 for

Froebenius norm.
• Later rediscovered by Eckart & Young 1936, also generalized to

other norms..
• Thus, PCA provides the best low rank approximation to the data

matrix.

https://en.wikipedia.org/wiki/Low‐rank_approximation#Proof_of_Eckart%E2%80%93Young%E2%80%93Mirsky_theorem_(for_spectral_norm)

For PCA and other applications, don’t need the entire
SVD, and can make do with “trimmed down” versions:
1. Full SVD
2. Thin SVD (remove columns of U not

corresponding to rows of V*)
3. Compact SVD (remove vanishing singular values

and corresponding columns/rows in U and V*),
4. Truncated SVD (keep only largest t singular values

and corresponding columns/rows in U and V*)

Practicalities: Reduced SVDs

https://en.wikipedia.org/wiki/Singular_value_decomposition

PCA from neural networks!
• Special kind of neural network, called an autoencoder

recovers the same subspace as PC-k.
• Autoencoder tries to compress a data set by trying

to predict itself back after going through a
bottleneck.

https://towardsdatascience.com/understanding‐pca‐autoencoders‐algorithms‐everyone‐can‐understand‐28ee89b570e2

• For a linear autoencoder with one hidden layer containing 𝑘 nodes, using squared
loss, the hidden layer representation is equivalent to that found from PCA-k
(although 𝑊 may correspond to different eigenvectors that span the same space).

• Can generalize by making non-linear transfers, and more layers, etc.

