CS 189/289

Today's lecture outline

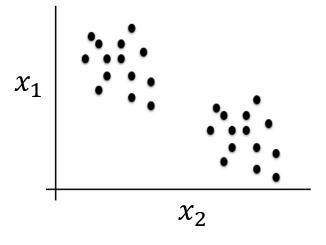
1. Clustering (k-means, mixture of Gaussians)

Recall, Unsupervised learning

- Seen supervised learning, $\{(x_i, y_i)\}$ for $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$ or $y \in \mathbb{Z}$.
- Much ML is focused on modeling $\{x_i\}$, unsupervised learning, which includes:
- i. Dimensionality reduction, $z \in \mathbb{R}^m = f_{\theta}(x)$, $m \ll d$.
- ii. Clustering, $z \in \mathbb{Z} = f_{\theta}(x)$.
- iii. Representation learning, $z \in \mathbb{R}^m$, $z = f_{\theta}(x)$, or $z \sim p_{\theta}(x)$.
- iv. Density estimation, evaluate $p_{\theta}(x)$.
- v. "Generative" modeling, $x \sim p_{\theta}(x)$

The main idea of *clustering* $\{x_i\}$

Suppose we had only input features, and no class labels:

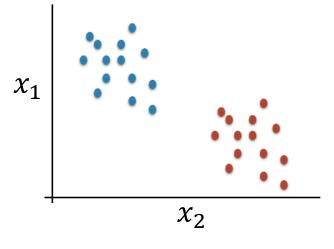


We may want to infer/assign discrete "class labels" from the data, based on the structure in the input space.

https://www.quora.com/What-is-the-difference-between-Clustering-and-Classification-in-Machine-Learning

The main idea of *clustering* $\{x_i\}$

Suppose we had only input features, and no class labels:



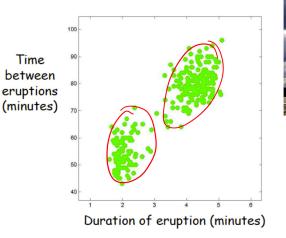
We may want to infer/assign discrete "class labels" from the data, based on the structure in the input space.

https://www.quora.com/What-is-the-difference-between-Clustering-and-Classification-in-Machine-Learning

Clustering for data exploration

e.g. find hidden subgroups:

- Types of customers in a database from customer activities.
- Subtypes of disease for therapeutics.
- Types of cells in a tissue from single cell data.
- Ancestry groups from genetic data.
- Finding topics in on-line documents.
- etc.

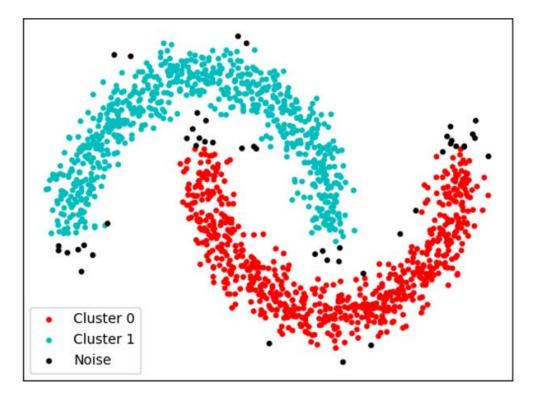


Cluster Interpretation and Labeling

	Cluster 2	Cluster 4	Cluster 1	Cluster 0	Cluster 5 Cluster	Cluster 3
	Dormant 42.2K	Erratic 19.8K	Unstable 24.4K	Stable 25.9K	Heavy 27.4K	Heavy + 28.3K
# Days / Sessions	•		•	•	0	•
Daily Usage Time	•	0	0			
Fluctuation	•	•	0		0	0

<u>https://medium.com/@sygong/k-means-clustering-for-customer-segmentations-a-practical-real-world-example-196a10323b9f</u> Bishop book on Pattern recongnition

Clustering for outlier detection



https://www.imperva.com/blog/2017/07/clustering-and-dimensionality-reduction-understanding-the-magic-behind-machine-learning/

Three broad approaches to clustering

Hierarchical clustering

- Build a tree (bottom-up or top-down), representing distances among data points
- Example: single-, average- linkage clustering

Partitional approaches

- Define and optimize a notion of "cost" defined over partitions
- Example: Spectral clustering, graph-cut based approaches

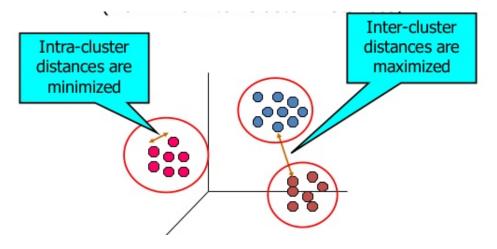
Model-based approaches

- Maintain cluster "models" and infer cluster membership (e.g., assign each point to closest center)
- Example: k-means, Gaussian mixture models, ...



Main desiderata of clustering

- 1. Want high intra-cluster similarity.
- 2. Want low inter-cluster similarity.



3. Similarity/distance is in the eye of the beholder!

https://www.slideshare.net/NontawatB/08-clustering

Aside: distances, metrics and similarities.

- "want points to be similar/dissimilar"
- "want distance to be minimized/maximized".

Properties of a distance function (metric):

Aside: distances, metrics and similarities.

- "want points to be similar/dissimilar"
- "want distance to be minimized/maximized".

Properties of a distance function (metric):

- 1. j = k iff d(j, k) = 0.
- 2. $j \neq k$ iff d(j,k) > 0.
- 3. symmetry, d(j,k)=d(k,j) (why KL-divergence is not a distance)
- 4. triangle inequality, $d(i,j) + d(i,k) \ge d(j,k)$

Aside: distances, metrics and similarities.

- "want points to be similar/dissimilar"
- "want distance to be minimized/maximized".

Properties of a distance function (metric):

1. j = k iff d(j, k) = 0.

2. $j \neq k$ iff d(j,k) > 0.

- 3. symmetry, d(j,k)=d(k,j) (why KL is not a distance)
- 4. triangle inequality, $d(i,j) + d(i,k) \ge d(j,k)$

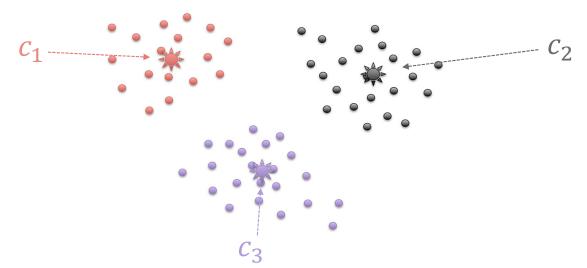
dissimilarity: satisfies at least 1,2, and 3 above

similarity: complement of dissimilarity:

similarity(j,k) = 1 - dissimilarity(j,k)

Centroid-based clustering

• Each cluster is represented by a point in the input space-a centroid--though not necessarily in the training data), $c_k \in R^d$ (for $X \in R^d$).

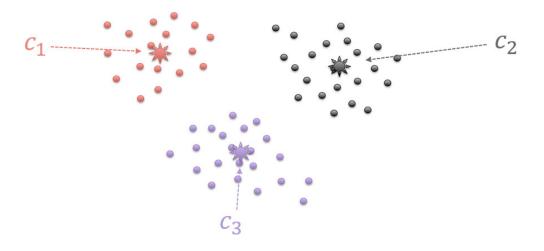


• "K-means" is the most common centroid-based approach.

Portions of some slides courtesy of Yisong Yue at Caltech.

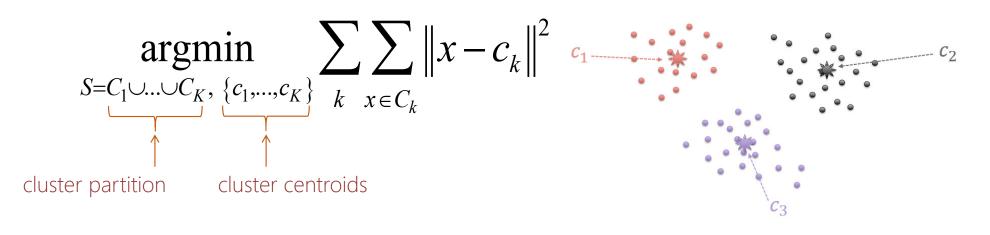
K-means clustering

- Parameters are $\{c_k\}$.
- Chosen such that:
 - > the distance of each point, x_i , to its assigned centroid, is minimized.



Formally: K-means clustering

- Training data, $X = \{x_i\}_{i=1}^n$, $x_i \in \mathbb{R}^d$.
- Parameters are $\{c_k \in \mathbb{R}^d\}$.
- A cluster partition, $C_1 \cup C_2 \cup \cdots \cup C_K$, wherein every x_i is assigned to one (and only one) of the K clusters.
- Optimization problem:



Parameter learning in K-means

- Suppose we knew $C_1 \cup C_2 \cup \cdots \cup C_k$ how could we find $\{c_k\}$?
- The optimization problem would reduce to:

$$\hat{c}_k = \underset{c_k}{\operatorname{argmin}} \sum_{x \in C_k} \|x - c_k\|^2$$

• For which one can show that the answer is $\hat{c}_k = \frac{1}{N} \sum_{x \in C_k} x$

$$\underset{S=C_{1}\cup\ldots\cup C_{K}, \{c_{1},\ldots,c_{K}\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_{k}} \|x-c_{k}\|^{2}$$

Other way around (parameter learning)

- Suppose we knew $\{c_k\}$, how could we find $C_1 \cup C_2 \cup \cdots \cup C_K$?
- Answer: choose the cluster which is closest to each point,

$$z_i \equiv \underset{k}{\operatorname{argmin}} \|x_i - c_k\|^2$$
, and then $\hat{C}_k = \{x_i | z_i = k\}$.

$$\underset{S=C_{1}\cup\ldots\cup C_{K}, \{c_{1},\ldots,c_{K}\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_{k}} \|x-c_{k}\|^{2}$$

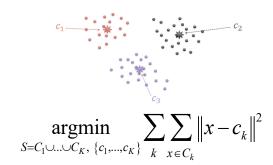
1. Initialize the cluster centers, $\{c_k\}$

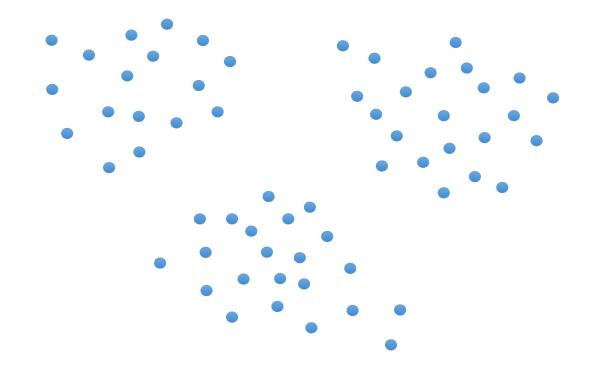
(e.g., pick k points at random from your training data).

- 2. Repeat until convergence:
 - i. Compute partition $C_1 \cup C_2 \cup \cdots \cup C_{K'}$ given the $\{c_k\}$.
 - ii. Compute centers $\{c_k\}$, given $C_1 \cup C_2 \cup \cdots \cup C_K$.

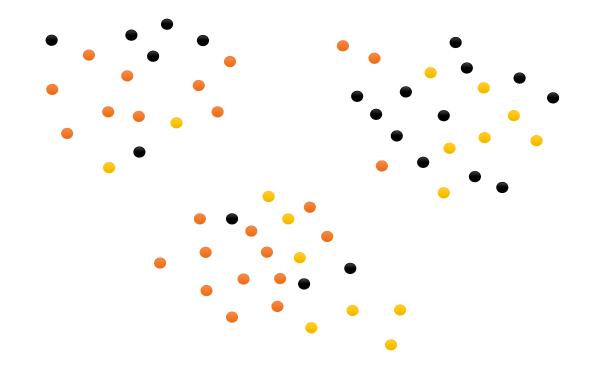
Does this converge?

- Yes: at each step, we are reducing the objective function or have converged.
- If assignments do not change, we have a local min.

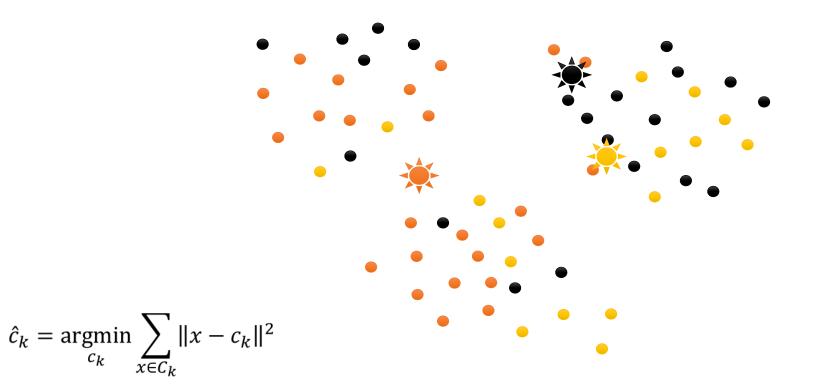




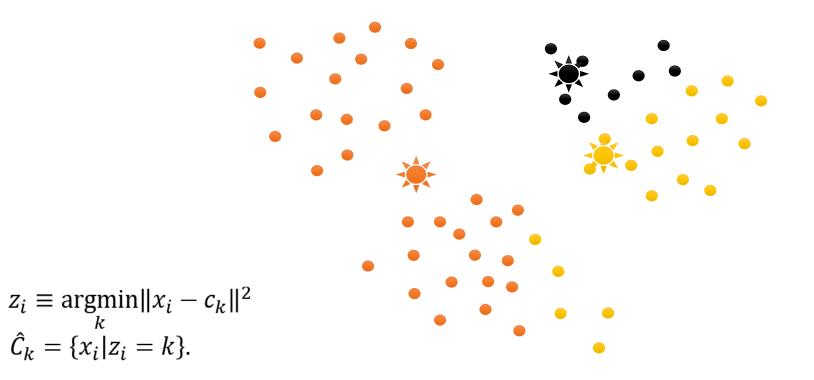
[slide courtesy Yisong Yue]



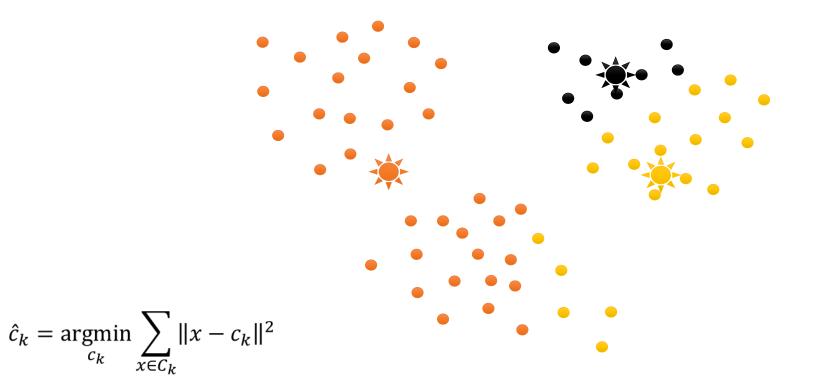
[slide courtesy Yisong Yue]



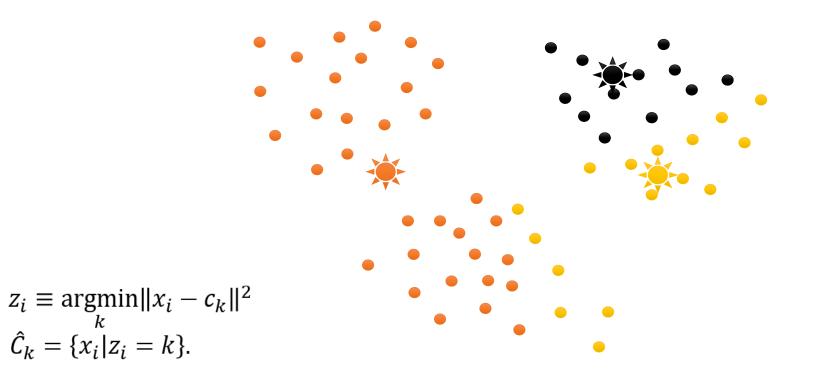
[slide courtesy Yisong Yue]



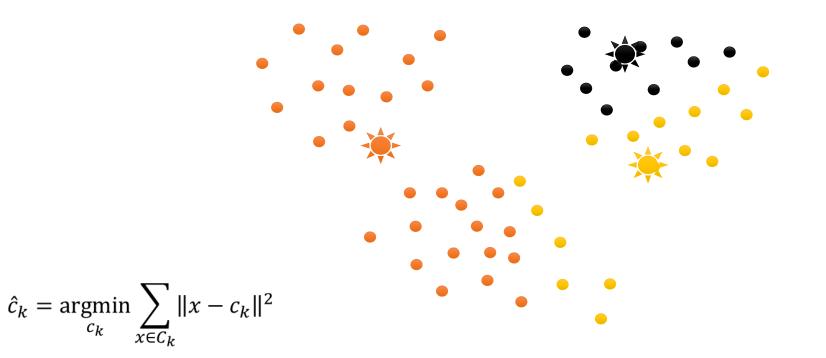
[slide courtesy Yisong Yue]



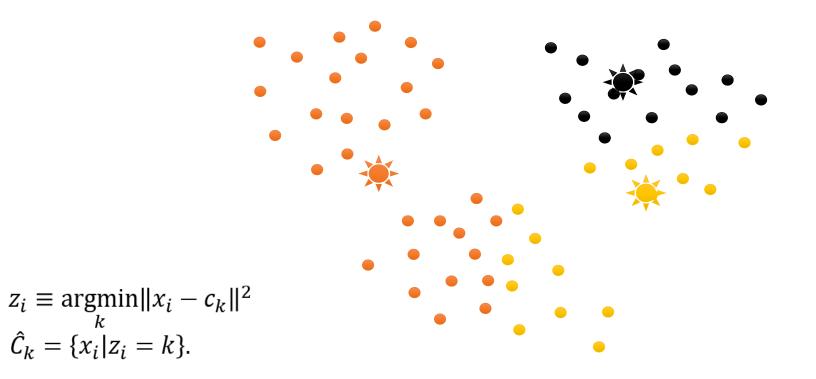
[slide courtesy Yisong Yue]



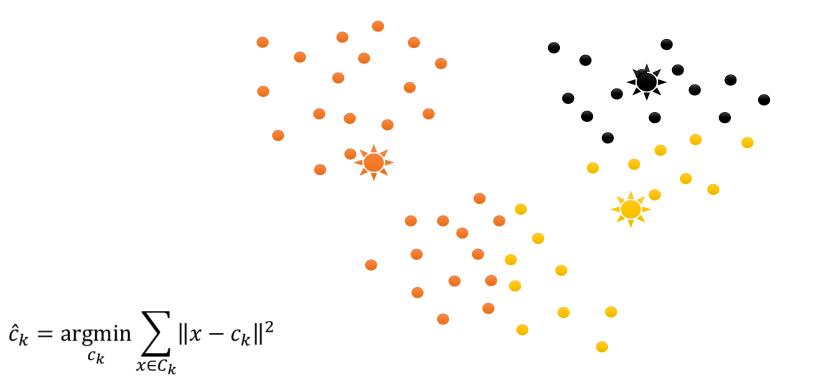
[slide courtesy Yisong Yue]



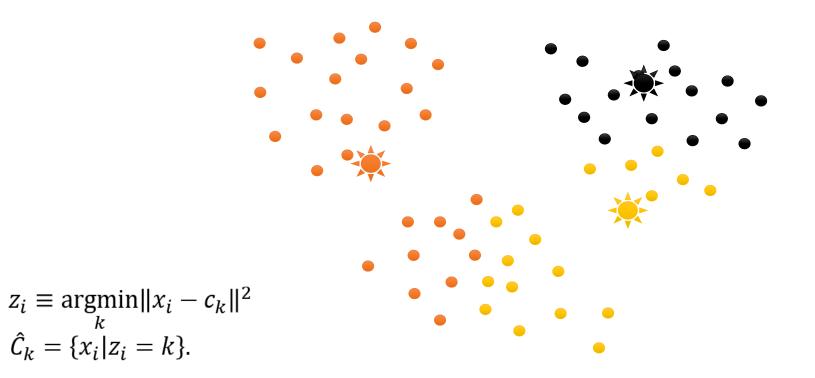
[slide courtesy Yisong Yue]



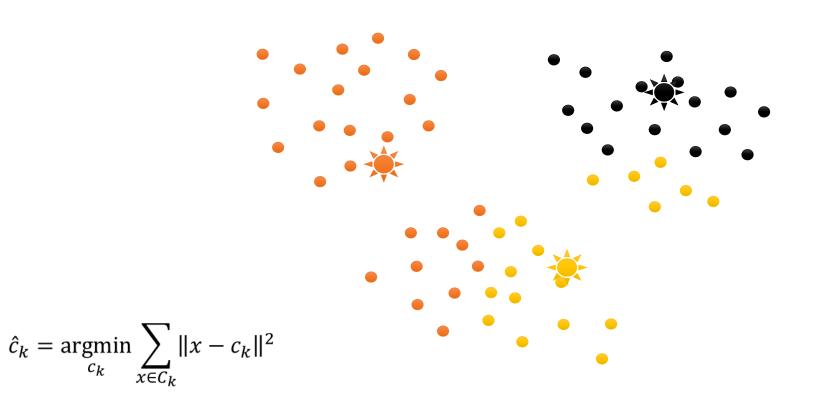
[slide courtesy Yisong Yue]



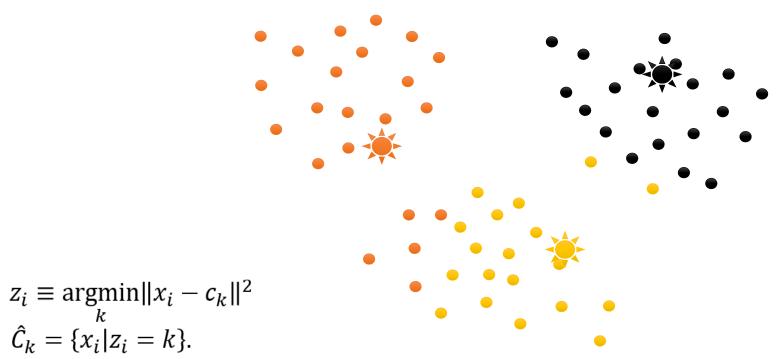
[slide courtesy Yisong Yue]



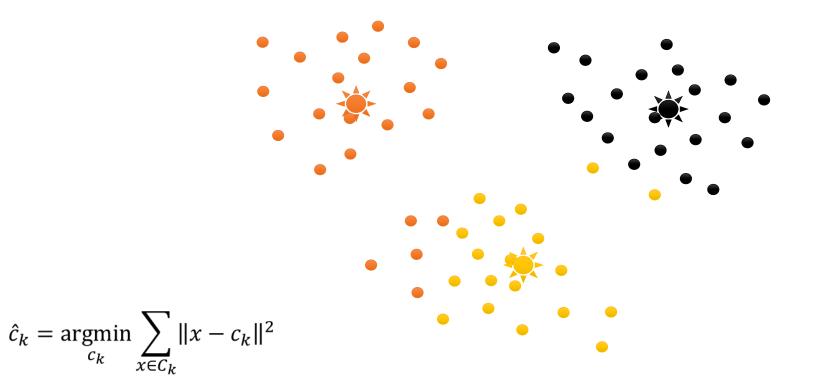
[slide courtesy Yisong Yue]



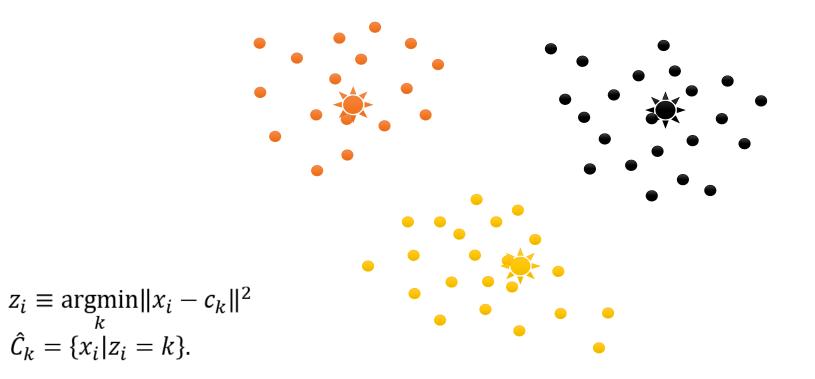
[slide courtesy Yisong Yue]



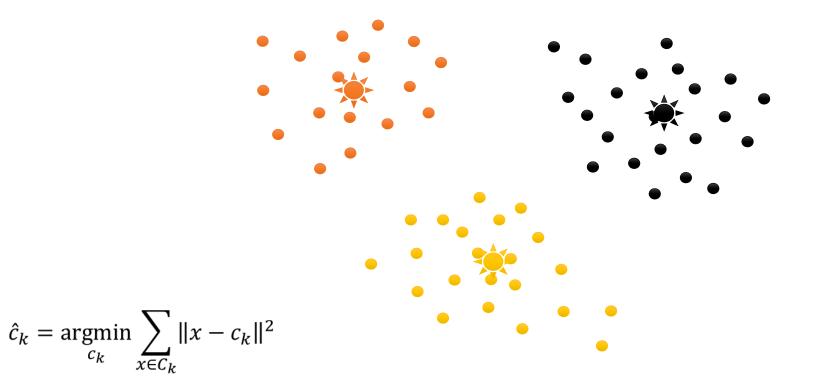
[slide courtesy Yisong Yue]



[slide courtesy Yisong Yue]



[slide courtesy Yisong Yue]



[slide courtesy Yisong Yue]

Could we also use gradient descent?

$$loss = L(\{c_k, C_k\}) = \sum_k \sum_{x \in C_k} ||x - c_k||^2$$

$$\Rightarrow L(\{c_k\}) = \sum_i \min_k ||x_i - c_k||^2$$

Let r_i be the closest centroid to x_i .

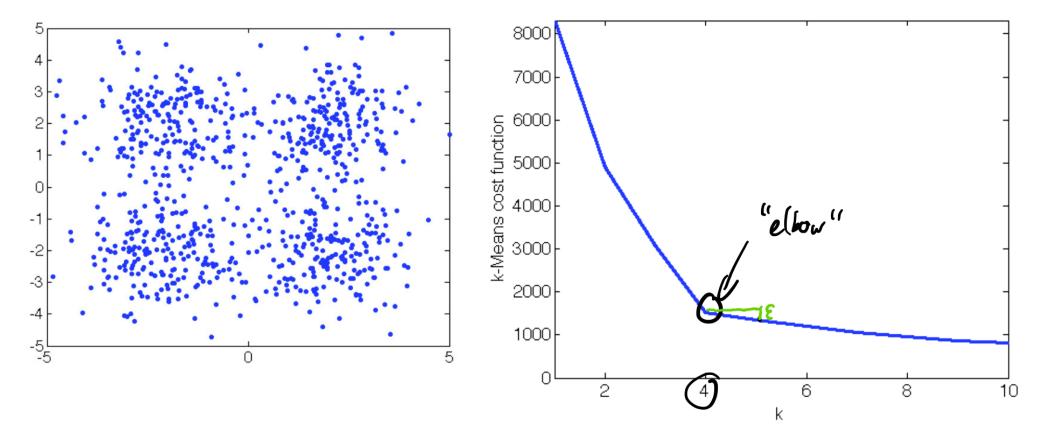
$$\Rightarrow \nabla_{c_k} L(\{c_k\}) = -2(x_i - c_k)[r_i = k]$$

- No more discrete variables, can use gradient descent!
- Is this a sleight of hand? Where is the discreteness?

Aside: gradient of min function:

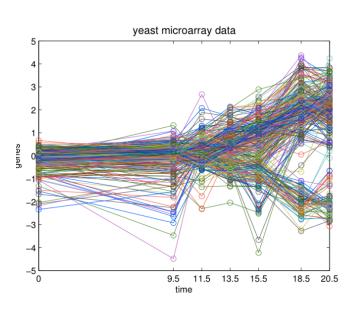
$$f(x,y) = \min(x,y) = egin{cases} x & ext{if } x \leq y \ y & ext{if } x > y \end{cases}$$

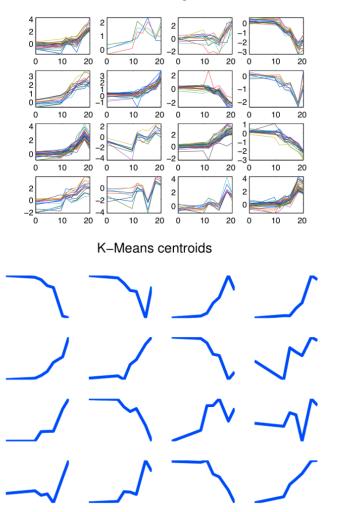
How to find good # of clusters?



[[]slide from Andrea Krause]

Application of K-Means Clustering



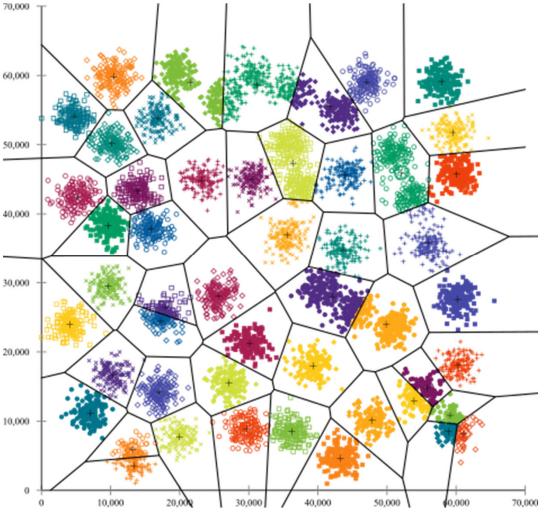


clustering yeast genes by their "gene expression" measurements over time

http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515_Winter15.html

K-Means Clustering of Profiles

Example of bad local minimum in K-means



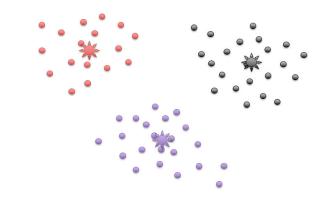
https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means

More on clustering desiderata

So far we have mentioned:

- 1. Want high intra-cluster similarity.
- 2. Want low inter-cluster similarity.

Can you think of any others?



- May want invariances to rotation and or scaling of $\{x_i\}$.
- If clustering depends only on distance/similarity, then whatever invariances these have, the clustering will also have.

Aside: Kleinberg's Impossibility Theorem for Clustering

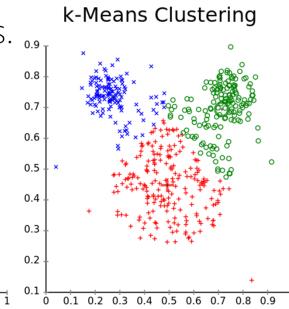
Three (more) clustering desiderata of which provably, one can achieve only two at a time for a given clustering algorithm:

- 1. Scale-Invariance (if stretch the data out $(\tilde{a}(j,k) = c \times d(j,k))$, then clustering should stay the same).
- 2. Consistency (if stretch data such that distance within cluster only gets smaller, and between clusters only gets bigger, then clustering should stay the same).
- 3. Richness (clustering function should be able to produce any arbitrary partition/clustering of data points).

Lets revisit K-means—any weaknesses?

$$\underset{S=C_{1}\cup...\cup C_{K}, \{c_{1},...,c_{K}\}}{\operatorname{argmin}} \sum_{k} \sum_{x \in C_{k}} \|x - c_{k}\|^{2}$$

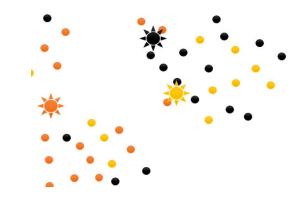
- 1. No likelihood, so hard to understand assumptions.
- e.g. implicitly corresponds to clusters with "spherical" shape because each feature is treated equally.
- 3. Each step in the optimization has a "hard" assignment which means that can't have any uncertainty as to which point belongs to which cluster.



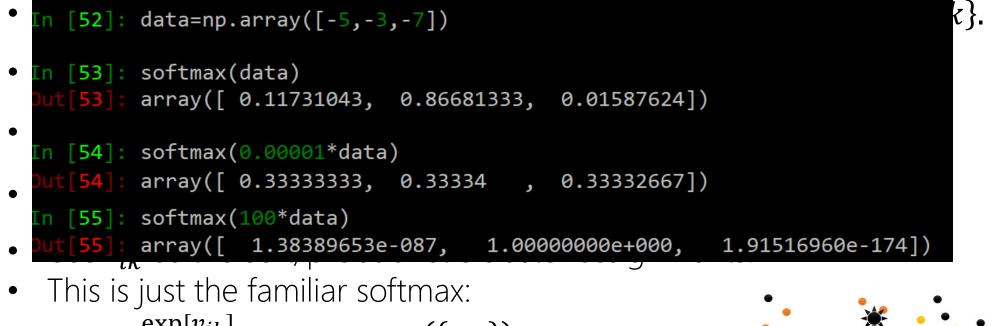
Lets develop a "soft" K-means algorithm

- Previously: $z_i \equiv \underset{k}{\operatorname{argmin}} \|x_i c_k\|^2$, and then $\hat{C}_k = \{x_i | z_i = k\}$.
- Convert to max, $z_i = \operatorname{argmax} \exp(-\|x_i c_k\|^2)$.
- Let $v_{ik} \equiv \exp\left(-\|x_i c_k\|^2\right)$ so that $z_i = \underset{k}{\operatorname{argmax}} \{v_{ik}\}$.
- Now normalize the $\{v_{ik}\}$ so that $r_{ik} \equiv \frac{v_{ik}}{\sum_k v_{ik}}$
- Use r_{ik} as the soft/probabilistic cluster assignments.
- This is just the familiar softmax:
- $r_{ik} = \frac{\exp[v_{ik}]}{\sum_{j} \exp[v_{ij}]} = softmax(\{v_{ij}\})[k]$

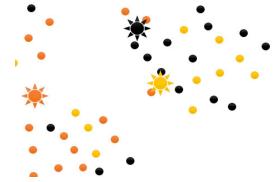
•
$$r_{ik} \equiv \frac{\exp[\beta v_{ik}]}{\sum_{j} \exp[\beta v_{ij}]} = softmax(\{\beta v_{ij}\})[k]$$



Consider a "soft" K-means algorithm



- $r_{ik} = \frac{\exp[v_{ik}]}{\sum_{j} \exp[v_{ij}]} = softmax(\{v_{ij}\})[k]$ $r_{ik} = \frac{\exp[\beta v_{ik}]}{\sum_{j} \exp[\beta v_{ij}]} = softmax(\{\beta v_{ij}\})[k]$



Generalize hard to soft k-means:

Repeat until convergence:
1. Replace
$$r_i \equiv \underset{k}{\operatorname{argmin}} \|x_i - c_k\|^2$$
 with
 $r_{ik} = softmax(\{-\beta \|x_i - c_k\|^2\})$ (yields a "soft partition")
2. Replace $\hat{c}_k = \underset{k}{\operatorname{argmin}} \sum_{x \in C_k} \|x - c_k\|^2$ with
 $\hat{c}_k = \underset{k}{\operatorname{argmin}} \sum_{i=1}^N r_{ik} \|x_i - c_k\|^2$
Had, $\hat{c}_k = \frac{1}{N} \sum_{x \in C_k} x$, now have, $\hat{c}_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}$.

(Reduces to hard assignment if β is high, which causes $r_{ik} \in \{0,1\}$)

Un-answered issues with "soft" K-means

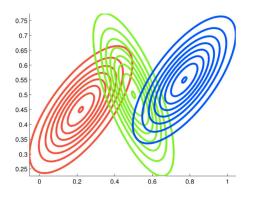
- 1. How should we set β ? (not clear)
- 2. We are still treating all the features in x_i equally. Does this make sense? It implies a spherical cluster. But what if cluster would be "better" elongated (non-spherical)? But how?

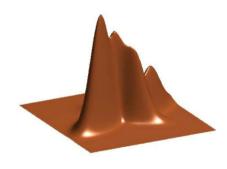
Going "soft" has gotten us some flexibility, but we can do better.

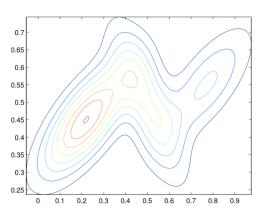
Lets go to a fully probabilistic model! (Mixture of Gaussians)

Mixture of Gaussians (MoG)

- Each cluster is now represented by a Gaussian $N(x_i|u_k, \Sigma_k)$, with two free parameters
- Now we can write down a likelihood and perform MLE!







http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515_Winter15.html

Mixture of Gaussians (MoG) likelihood for one x_i

• Let z_i be a hard (but hidden/unobserved) assignment to cluster— z_i is a latent variable—we don't know it's value, so have to marginalize it (sum it out):

$$L_i = p(x_i) = \sum_{k=1}^{K} p(x_i, z_i = k)$$

Mixture of Gaussians (MoG) likelihood for one x_i

• Let z_i be a hard (but hidden/unobserved) assignment to cluster— z_i is a latent variable—we don't know it's value, so have to marginalize it (sum it out):

$$L_{i} = p(x_{i}) = \sum_{k=1}^{K} p(x_{i}, z_{i} = k)$$

= $\sum_{k=1}^{K} p(x_{i} | z_{i} = k) p(z_{i} = k)$
= $\sum_{k=1}^{K} N(x_{i} | \mu_{k}, \Sigma_{k}) p(z_{i} = k)$

Mixture of Gaussians (MoG) likelihood for one x_i

• Let z_i be a hard (but hidden/unobserved) assignment to cluster— z_i is a latent variable—we don't know it's value, so have to marginalize it (sum it out):

$$\begin{split} \mathrm{L}_{i} &= p(x_{i}) = \sum_{k=1}^{K} p(x_{i}, z_{i} = k) \\ &= \sum_{k=1}^{K} p(x_{i} | z_{i} = k) p(z_{i} = k) \\ &= \sum_{k=1}^{K} N(x_{i} | \mu_{k}, \Sigma_{k}) p(z_{i} = k) \\ &= \sum_{k=1}^{K} N(x_{i} | \mu_{k}, \Sigma_{k}) \alpha_{k} \end{split}$$
where $\alpha_{k} \equiv p(z_{i} = k)$ and $\sum_{k} \alpha_{k} = 1$

- The parameters we want to learn are $\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}$.
- α_k are called the "mixing weights".
- Now we can use MLE on $LL = log \prod_i L_i = \sum_i log L_i$.

Alternative uses of MoG beyond clustering

Once we have estimated the values of $\theta = \{\mu_k, \Sigma_k, \alpha_k\}$ from the training data, we can make calls to $p(x|\theta)$, for any data point in the training data or otherwise.

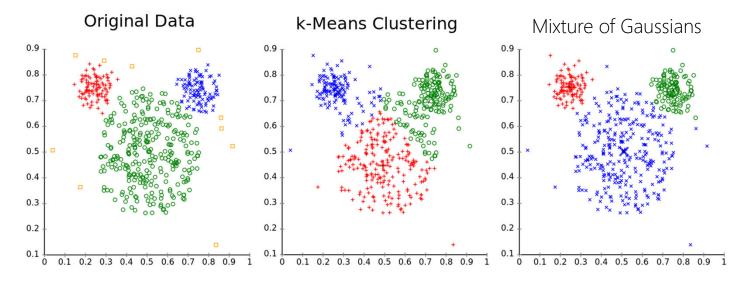
• So we have also performed *density estimation*.

We can also use it to generate data, $x \sim p(x|\theta)$.

- So we have a *generative model*:
 - 1. For each point, *j*, sample cluster $c_i \sim multinomial(\{\alpha_k\})$.
 - 2. Then sample from the corresponding Gaussian.

K-means vs. Mixture of Gaussians

- If we take the zero noise limit in Mixture of Gaussians (zero variance in the Gaussians), we get K-means.
- MoG allows non-spherical clusters (via the covariance matrix).
- And different covariance per cluster, which is helpful here:



https://en.wikipedia.org/wiki/K-means_clustering

K-means vs. Mixture of Gaussians

- MoG: explicit assumptions in the form of statistical distributions.
- Thus easier to generalize, while understanding assumptions.
- Can derive principled objective in the form of a likelihood, which involves marginalizing over the hidden/latent variable (cluster assignment).
- There is a special form of MLE for these latent variables called Expectation-Maximization.

EM for Mixture of Gaussians $\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}$.

Intuitive Description of EM (EM is exact maximum likelihood): Initialize with random cluster assignments

- i. use current parameter estimates to (probabilistically) estimate $\{p(z_i|x_i, \theta)\}$ (i.e. "fill in the missing data": E-step)
- ii. do MLE on "fully observed" data (where z^n are probabilistically filled in: M-step).
- This is a lot like the K-means algorithm, only now with a principled loss function and parameter estimation principle.
- This procedure yields the MLE solution for MoG (and generally for latent variable models).

EM for Mixture of Gaussians $\theta \equiv \{\mu_k, \Sigma_k, \alpha_k\}$.

