
CS 189/289
Today’s lecture outline

1. Clustering (k-means, mixture of Gaussians)



Recall, Unsupervised learning
• Seen supervised learning, 𝑥 ,𝑦 for 𝑥 ∈ ℝ and 𝑦 ∈ ℝ or 𝑦 ∈ ℤ.
• Much ML is focused on modeling 𝑥 , unsupervised learning, which 

includes:
i. Dimensionality reduction, 𝑧 ∈ ℝ 𝑓 𝑥 , 𝑚 ≪ 𝑑.
ii. Clustering, 𝑧 ∈ ℤ 𝑓 𝑥 .
iii. Representation learning, 𝑧 ∈ ℝ , 𝑧 𝑓 𝑥 , or 𝑧~𝑝 𝑥 . 
iv. Density estimation, evaluate 𝑝 𝑥 .
v. “Generative” modeling, 𝑥~𝑝 𝑥



Suppose we had 
only input features, 
and no class labels:

𝑥

𝑥

https://www.quora.com/What-is-the-difference-between-Clustering-and-Classification-in-Machine-Learning

The main idea of clustering 

We may want to infer/assign discrete “class labels” from 
the data, based on the structure in the input space.
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Clustering for data exploration

e.g. find hidden subgroups:
• Types of customers in a database from 

customer activities.
• Subtypes of disease for therapeutics.
• Types of cells in a tissue from single cell data.
• Ancestry groups from genetic data.
• Finding topics in on-line documents.
• etc.

https://medium.com/@sygong/k-means-clustering-for-customer-segmentations-a-practical-real-world-example-196a10323b9f
Bishop book on Pattern recongnition



Clustering for outlier detection

https://www.imperva.com/blog/2017/07/clustering-and-dimensionality-reduction-understanding-the-magic-behind-machine-learning/



[slide from Andrea Krause]

Three broad approaches to clustering



Main desiderata of clustering
1. Want high intra-cluster similarity.
2. Want low inter-cluster similarity.

3. Similarity/distance is in the eye of the beholder! 

https://www.slideshare.net/NontawatB/08-clustering



Aside: distances, metrics and similarities.
• “want points to be similar/dissimilar”
• “want distance to be minimized/maximized”.

Properties of a distance function (metric):
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dissimilarity: satisfies at least 1,2, and 3 above
similarity: complement of dissimilarity:
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑗,𝑘 1 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑗,𝑘



• Each cluster is represented by a point in the input space--
a centroid--though not necessarily in the training data), 
𝑐 ∈ 𝑅 (for 𝑋 ∈ 𝑅 ).

• “K-means” is the most common centroid-based approach.

𝑐

𝑐

𝑐

Centroid-based clustering

Portions of some slides courtesy of Yisong Yue at Caltech.



K-means clustering
• Parameters are .
• Chosen such that: 
 the distance of each point, , to its assigned 

centroid, is minimized.



Formally: K-means clustering
• Training data, 𝑋 𝑥 , 𝑥 ∈ 𝑅 .
• Parameters are 𝑐 ∈ 𝑅 .
• A cluster partition, 𝐶 ∪ 𝐶 ∪⋯𝐶 , wherein every 𝑥 is 

assigned to one (and only one) of the 𝐾 clusters. 
• Optimization problem:

argmin
SC1...CK , c1,...,cK 

x  ck
2

xCk


k


cluster partition cluster centroids



• Suppose we knew 𝐶 ∪ 𝐶 ∪⋯𝐶 how could we find 𝑐 ?
• The optimization problem would reduce to:

𝑐 argmin 𝑥 𝑐
∈

• For which one can show that the answer is 𝑐 ∑ 𝑥∈

Parameter learning in K-means

argmin
SC1...CK , c1,...,cK 

x  ck
2

xCk


k




• Suppose we knew 𝑐 , how could we find  𝐶 ∪ 𝐶 ∪⋯𝐶 ?
• Answer: choose the cluster which is closest to each point, 

𝑧 ≡ argmin 𝑥 𝑐 , and then 𝐶 𝑥 𝑧 𝑘 .

hoose the cluster which is closest to each point, 𝑧 ≡
argmin 𝑥 𝑐 .

Other way around (parameter learning)

argmin
SC1...CK , c1,...,cK 

x  ck
2

xCk


k




1. Initialize the cluster centers, 𝑐
(e.g., pick k points at random from your training data).

2. Repeat until convergence:
i. Compute partition 𝐶 ∪ 𝐶 ∪⋯𝐶 , given the 𝑐 .
ii. Compute centers 𝑐 , given 𝐶 ∪ 𝐶 ∪⋯𝐶 .

The K-Means algorithm

argmin
SC1...CK , c1,...,cK 

x  ck
2

xCk


k


Does this converge?
• Yes: at each step, we are reducing the objective function or have 

converged.
• If assignments do not change, we have a local min.



The K-Means algorithm

[slide courtesy Yisong Yue]
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The K-Means algorithm



𝑙𝑜𝑠𝑠 𝐿 𝑐 ,𝐶 𝑥 𝑐
∈

⇒ 𝐿 𝑐  ∑ min 𝑥 𝑐

Let 𝑟 be the closest centroid to 𝑥 .
⇒ 𝛻 𝐿 𝑐 2 𝑥 𝑐 𝑟 𝑘

• No more discrete variables, can use gradient descent!
• Is this a sleight of hand? Where is the discreteness?

Could we also use gradient descent?

[Bottou & Bengio NIPS 1995]



Aside: gradient of min function:



How to find good # of clusters?

[slide from Andrea Krause]



http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515_Winter15.html

clustering yeast 
genes by their 
“gene expression” 
measurements 
over time



Example of bad local minimum in K‐means

https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means



More on clustering desiderata
So far we have mentioned:

1. Want high intra-cluster similarity.
2. Want low inter-cluster similarity.

Can you think of any others?

• May want invariances to rotation and or scaling of .
• If clustering depends only on distance/similarity, then whatever 

invariances these have, the clustering will also have.



Aside: Kleinberg’s Impossibility Theorem for Clustering
Three (more) clustering desiderata of which provably, one can 
achieve only two at a time for a given clustering algorithm:
1. Scale-Invariance (if stretch the data out (𝑑 𝑗, 𝑘 𝑐 𝑑 𝑗, 𝑘 ), then clustering 

should stay the same).
2. Consistency (if stretch data such that distance within cluster only gets 

smaller, and between clusters only gets bigger, then clustering should 
stay the same).

3. Richness (clustering function should be able to produce any arbitrary 
partition/clustering of data points).

[NIPS 2002]



Lets revisit K-means—any weaknesses?

argmin
SC1...CK , c1,...,cK 

x  ck
2

xCk


k


1. No likelihood, so hard to understand assumptions.
2. e.g. implicitly corresponds to clusters with 

“spherical” shape because each feature is treated 
equally. 

3. Each step in the optimization has a “hard” 
assignment which means that can’t have any 
uncertainty as to which point belongs to which 
cluster.



• Previously:          𝑧 ≡ argmin 𝑥 𝑐 , and then 𝐶 𝑥 𝑧 𝑘 .

• Convert to max, 𝑧 argmax exp 𝑥 𝑐 .

• Let 𝑣 ≡ exp 𝑥 𝑐 so that 𝑧 argmax  𝑣 .

• Now normalize the 𝑣 so that 𝑟 ≡ ∑

• Use 𝑟 as the soft/probabilistic cluster assignments.
• This is just the familiar softmax:
• 𝑟  

∑  
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑣 𝑘

• 𝑟 ≡  
∑  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝛽𝑣 𝑘

Lets develop a “soft” K-means algorithm
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Repeat until convergence:
1. Replace 𝑟 ≡ argmin 𝑥 𝑐 with 

𝑟 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝛽 𝑥 𝑐 (yields a “soft partition”)
2. Replace 𝑐 argmin∑ 𝑥 𝑐∈ with 

𝑐 argmin∑ 𝑟 𝑥 𝑐

Had, 𝑐 ∑ 𝑥∈ , now have, 𝑐 ∑
∑ .

(Reduces to hard assignment if 𝛽 is high, which causes 𝑟 ∈  0,1 )

Generalize hard to soft k-means:



1. How should we set ? (not clear)

2. We are still treating all the features in equally. Does this 
make sense? It implies a spherical cluster. But what if cluster 
would be “better” elongated (non-spherical)? But how?

Going “soft” has gotten us some flexibility, but we can do better.

Lets go to a fully probabilistic model! (Mixture of Gaussians)

Un-answered issues with “soft” K-means



• Each cluster is now represented by a Gaussian , 
with two free parameters

• Now we can write down a likelihood and perform MLE!

Mixture of Gaussians (MoG)

http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515_Winter15.html
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• Let be a hard (but hidden/unobserved) assignment to 
cluster— is a latent variable—we don’t know it’s value, so 
have to marginalize it (sum it out):

where 𝛼 ≡ 𝑝 𝑧 𝑘 and ∑ 𝛼 1

Mixture of Gaussians (MoG) likelihood for one 

• The parameters we want to learn are .
• are called the “mixing weights”.
• Now we can use MLE on .



Once we have estimated the values of from the 
training data, we can make calls to , for any data point in the 
training data or otherwise. 
• So we have also performed density estimation.

We can also use it to generate data, . 
• So we have a generative model:

1. For each point, , sample cluster .
2. Then sample from the corresponding Gaussian.

Alternative uses of MoG beyond clustering



• If we take the zero noise limit in Mixture of Gaussians (zero 
variance in the Gaussians), we get K-means. 

• MoG allows non-spherical clusters (via the covariance matrix).
• And different covariance per cluster, which is helpful here:

K-means vs. Mixture of Gaussians

https://en.wikipedia.org/wiki/K-means_clustering

Mixture of Gaussians 



• MoG: explicit assumptions in the form of statistical 
distributions.

• Thus easier to generalize, while understanding 
assumptions.

• Can derive principled objective in the form of a 
likelihood, which involves marginalizing over the 
hidden/latent variable (cluster assignment).

• There is a special form of MLE for these latent variables 
called Expectation-Maximization.

K-means vs. Mixture of Gaussians



Intuitive Description of EM (EM is exact maximum likelihood): 
Initialize with random cluster assignments
i. use current parameter estimates to (probabilistically) estimate 

𝑝 𝑧 |𝑥 ,𝜃 (i.e. “fill in the missing data”: E-step)
ii. do MLE on “fully observed” data (where 𝑧 are 

probabilistically filled in: M-step).

EM for Mixture of Gaussians

• This is a lot like the K-means algorithm, only now with a principled 
loss function and parameter estimation principle.

• This procedure yields the MLE solution for MoG (and generally for 
latent variable models).

𝜃 ≡ 𝜇 , Σ ,𝛼 .



EM for Mixture of Gaussians 𝜃 ≡ 𝜇 , Σ ,𝛼 .


