Empirical Risk Minimization

« Assume that there is a joint probability distribution P(x,y) over X and
Y and the training set consists of n data points (x, v.)

e Our goalisto learn a function h that minimizes the risk R(h) where L
is the loss function. We do not know the true distribution P(x,y), so
we cannot know the true risk. However we can compute an
approximation, called the empirical risk, using the training set.

« The hope is that by minimizing the empirical risk, we can learn a
good hypothesis function h

R(h) = B[L(h(z),y)] = / L(h(z),y) dP(z,y).

Remp (h) = ZL(h i), Yi)-



Choosing the hypothesis class

The function h is picked from some hypothesis class
H as a minimizer of the empirical risk

Suppose H is a neural network. We still have to pick
the number of layers, the number of neurons in
each layer etc. This is part of the specification of H.

Generically we talk about the “capacity” of H.
Roughly speaking, bigger networks have higher
capacity than smaller networks.

How should we choose capacity given a certain size
of training data set?



Choosing capacity of H

e Traditional Statistics views this as a bias-
variance tradeoff

« Modern neural network practice doesn’t treat
this as a tradeoff — go as high capacity as you
can (e.g. networks like GPT-3 push the
boundary of current computational hardware)

« Resolving the apparent inconsistency between
these two views is the subject of much current
research



Test sets, validation sets & cross-validation

DATASET ]

FOLD 1 l FOLD 2 l FOLD 3 l FOLD 4 l FOLD 5

FOLD 1 l FOLD 2 l FOLD 3 l FOLD 4 l FOLD 5

FOLD 1 l FOLD 2 l FOLD 3 l FOLD 4 l FOLD 5

FOLD 1 l FOLD 2 l FOLD 3 l FOLD 4 l FOLD 5

)

FOLD 1 l FOLD 2 l FOLD 3 l FOLD 4 l FOLD 5

Do not use test set to
set hyper-parameters.
That is a grievous sin.
The test set should be
used once at the very
end to report your final
numbers

While developing the
approach use a
validation set (subset
of trianing set). If you
are short on data but
have plenty of
compute, use Cross
validation



Bias-Variance tradeoff from
classical statistics

References:
Hastie et al, Elements of Stat. Learning Theory, Ch. 7
Geman, Bienenstock & Doursat (1992)
scott.fortmann-roe.com/docs/BiasVariance.html



Error = (Bias)2 + Variance + Irreducible
noise
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Bayes Optimal Classifier

Bayes Optimal Classifier

e

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated ezactly (Ezercise 2.2).



How the data was generated
(ESLI, Chapter 2)

tween the two, but closer to Scenario 2. First we generated 10 means my
from a bivariate Gaussian distribution N ((1,0)7,I) and labeled this class
BLUE. Similarly, 10 more were drawn from N ((0,1)7,I) and labeled class
\NCE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mj at random with probability 1/10, and
then generated a N(myg,1/5), thus leading to a mixture of Gaussian clus-
ters for each class. Figure 2.4 shows the results of classifying 10,000 new
observations generated from the model. We compare the results for least
squares and those for k-nearest neighbors for a range of values of k.



Linear Classifier




15-Nearest Neighbor




1-Nearest Neighbor
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FIGURE 2.4. Misclassification curves for the simulation example used in Fig-
ures 2.1, 2.2 and 2.3. A single training sample of size 200 was used, and a test
sample of size 10,000. The orange curves are test and the blue are training er-
ror for k-nearest-neighbor classification. The results for linear regression are the
bigger orange and blue squares at three degrees of freedom. The purple line is the
optimal Bayes error rate.
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complezity is varied. The light blue curves show the training error ert, while the
light red curves show the conditional test error Errr for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the ezpected training error E[erT).



Suggested Recipe

The “capacity” of the model is a hyper-parameter

We choose this based on the error on a “validation
set” (subset of training set put aside for this
purpose)

We expect that as we increase capacity, we will hit a
“sweet spot” that we discover using performance
on the validation set.

When we are using capacity smaller than optimal,
we are “underfitting”, when we use capacity larger
than optimal, we are “overfitting”.



But who do deep learning practitioners
actually do?

e Train on the largest over-parameterized model
that one can.

« Totally happy with training set error becoming
very small

 We don’t fear overfitting !
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The randomization test

e In their primary experiment, they create a copy of
the training data where they replace each label
independently by a random label chosen from the
set of valid labels. A dog picture labeled “dog”
might thus become a dog picture labeled “airplane”.

e They then run the learning algorithm on a mixture
of the natural data and the randomized data with
identical settings and model choice.



Deep Neural Nets can fit random labels

1
Figure 1. Fitting random labels and random pixels on CIFAR10. (a) The training loss of various experiment settings decaying with the training
steps. (b) The relative convergence time with different label corruption ratio. (c) The test error (also the generalization error since training
error is 0) under different label corruptions.
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Optimization can succeed even when there is no generalization !



Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®, Daniel Hsu®, Siyuan Ma?, and Soumik MandaP®
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Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the blas-variance trade-off. (8) The
double-descent risk curve, which Incorporates the U-shaped risk curve (l.e., the “classical”™ regime) together with the observed behavior from using high-
capacity function classes (l.e., the "modern” Interpolating regime), separated by the Interpolation threshold. The predictors to the right of the Interpolation

threshold have zero training risk.

Proc. Of National Academy of Sciences, Aug 6, 2019



Zero=one loss Squared loss
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Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient £, norms (log scale), and training risks of the RFF
model predictors h,,,, learned on a subset of MNIST (n = 10°, 10 classes). The Interpolation threshold Is achleved at N = 10%.
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Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n=4-10°, d =784,
K = 10 cdasses). The number of parameters Is (d+1)-H+(H+ 1) -K. The
Interpolation threshold (black dashed line) Is observed at n - K.



