
Empirical Risk Minimization

• Assume that there is a joint probability distribution P(x,y) over X and 
Y and the training set consists of n data points (xi, yi) 

• Our goal is to learn a function h that minimizes the risk R(h) where L 
is the loss function. We do not know the true distribution P(x,y), so 
we cannot know the true risk. However we can compute an 
approximation, called the empirical risk, using the training set. 

• The hope is that by minimizing the empirical risk, we can learn a 
good hypothesis function h 

   



Choosing the hypothesis class

• The function h is picked from some hypothesis class 
H as a minimizer of the empirical risk 

• Suppose H is a neural network. We still have to pick 
the number of layers, the number of neurons in 
each layer etc. This is part of the specification of H. 

• Generically we talk about the “capacity” of H. 
Roughly speaking, bigger networks have higher 
capacity than smaller networks.  

• How should we choose capacity given a certain size 
of training data set?



Choosing capacity of H

• Traditional Statistics views this as a bias-
variance tradeoff 

• Modern neural network practice doesn’t treat 
this as a tradeoff – go as high capacity as you 
can  (e.g. networks like GPT-3 push the 
boundary of current computational hardware) 

• Resolving the apparent inconsistency between 
these two views is the subject of much current 
research



Test sets, validation sets & cross-validation 

https://medium.com/the-owl/k-fold-cross-validation-in-keras-3ec4a3a00538

• Do not use test set to 
set hyper-parameters. 
That is a grievous sin. 
The test set should be 
used once at the very 
end to report your final 
numbers 

• While developing the 
approach use a 
validation set (subset 
of trianing set). If you 
are short on data but 
have plenty of 
compute, use cross 
validation



Bias-Variance tradeoff from 
classical statistics 

References:  
1. Hastie et al, Elements of Stat. Learning Theory, Ch. 7 
2. Geman, Bienenstock & Doursat (1992) 
3.  scott.fortmann-roe.com/docs/BiasVariance.html



Error = (Bias)2 + Variance + Irreducible 
noise







Bayes Optimal Classifier



How the data was generated 
(ESLI, Chapter 2)



Linear Classifier



15-Nearest Neighbor



1-Nearest Neighbor







Suggested Recipe

• The “capacity” of the model is a hyper-parameter 
• We choose this based on the error on a ”validation 

set” (subset of training set put aside for this 
purpose) 

• We expect that as we increase capacity, we will hit a 
“sweet spot” that we discover using performance 
on the validation set. 

• When we are using capacity smaller than optimal, 
we are “underfitting”, when we use capacity larger 
than optimal, we are “overfitting”.



But who do deep learning practitioners 
actually do?

• Train on the largest over-parameterized model 
that one can. 

• Totally happy with training set error becoming 
very small 

• We don’t fear overfitting ! 
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The randomization test

• In their primary experiment, they create a copy of 
the training data where they replace each label 
independently by a random label chosen from the 
set of valid labels. A dog picture labeled “dog” 
might thus become a dog picture labeled “airplane”. 

• They then run the learning algorithm  on a mixture 
of the natural data and  the randomized data with 
identical settings and model choice.



Deep Neural Nets can fit random labels

Optimization can succeed even when there is no generalization !
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