Markov Chains

Markov
assumption

DTN C:WE A Markov chain for weather (a) and one for words (b), showing states and
transitions. A start distribution 7 is required; setting ¥ = [0.1, 0.7, 0.2] for (a) would mean a

probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

More formally, consider a sequence of state variables ¢1,¢>,...,q;. A Markov
model embodies the Markov assumption on the probabilities of this sequence: that
when predicting the future, the past doesn’t matter, only the present.

Markov Assumption: P(q; = alq;...qi—1) = P(qi = a|qi—1) (A.1)



Markov Chains

O=q192-..9N a set of N states

A=anap...ay ...an a transition probability matrix A, each a;; represent-
ing the probability of moving from state i to state J, s.t.
Z?zl ajj — 1 Vi

T=m,M,..,IN an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state 1.
Some states j may have ; = 0, meaning that they cannot
be initial states. Also, Y 7, m; =1



The Weather-lce Cream HMM

By

P(1] HOT) 2 P(1] COLD) 5
P(2 | HOT) 4 P|coLD)| = | 4
P(3 | HOT) 4 P(3| COLD) 1

1D Wa A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).



Hidden Markov Models

Q=4q192---qn
A:a”...a,-j...aNN

O=010>...0T

e b,’(Ot)

T=7mT,T,....,TN

a set of N states

a transition probability matrix A, each g;; representing the probability
of moving from state i to state j, s.t. Z?’:l Ty = 1\

a sequence of 7T observations, each one drawn from a vocabulary V =
e e e AT

a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o; being generated
from a state i

an initial probability distribution over states. 7; is the probability that
the Markov chain will start in state ;. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, » =, m; = 1



The three problems for HMMs

Problem 1 (Likelihood):
Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).

Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.
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IO The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3.
Hidden states are in circles, observations in squares. The figure shows the computation of ¢ (j) for two states at

N

two time steps. The computation in each cell follows Eq. A.12: o4 (j) = > ;— 0%—1(i)aijbj(0;). The resulting

probability expressed in each cell is Eq. A.11: o4 (j) = P(01,02...0:,q; = J|).




Probabilistic Graphical
*  Models

Also known as Bayes Nets or Belief Nets
Judea Pearl of UCLA got a Turing award for his work on these

Special cases of these were known before e.g. Hidden Markov Models



Joint probability distributions

o Caanonical example is a multivariate Gaussian. The joint probability
density is specified by the mean, a n-dimensional vector, and the
covariance matrix, a n X n symmetric matrix.

o Suppose we have n binary random variables. Then the joint distribution

can be specified by a table with 2" entries. This quickly becomes

intractable, both for specification and subsequently in estimation from
data.

« The secret to tractability is “conditional independence” . This
information can be captured by a directed acyclic graph (DAG).For such a

graph, every node has well defined “parents” and the joint distribution is
the product of “local conditional distributions”



P(R,S,G) = P(R) P(S|R) P(G|S,R)

SPRINKLER

RAINf T F
F 0.4 0.6
T 0.01 0.99

RAIN

GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 099 0.01

0.2

0.8



I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there

a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

Burglary P(;(‘;’ Earthquake P;:’
P(A)

-]

o A
|
O
=

Al PJ) A ]P0
T| 9 -
E 1B

Note: <k parents = O(d"n) numbers vs. O(d")

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xi,...,X,) = 1l._,P(X;|Parents(X;))
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Given the joint probability distribution we can
answer various guestions

« What is the probability that it is raining, given that the grass is wet?

Pr(G=T,R=T Y e Pr(G=T,S=2,R=T)
PrR=T|G=T)= 1 ) _ Zeenh)

PI‘(G = T) Zm,yE{T,F} PI‘(G =T,S=z,R = y)



r — N o Pr(G:T) B Zm,yE{T,F} PI(G:T’S:w,R:y)

We can calculate the probability of any case using the joint probability distribution e.g.

Pr(G=T,S=T,R=T)=Pr(G=T|S=T,R=T)Pr(S=T|R=T)Pr(R=T)
= 0.99 x 0.01 x 0.2
= 0.00198.

Then the numerical results (subscripted by the associated variable values) are

0.00198 0.1584 891
Pr(R=T|G=T)= e s TFT = 2 L 35.7T%.
0.0019877r + 0.28877F + 0.1584rrr + 0.07FF 2491




The Weather-lce Cream HMM

(Source: Jurafsky HMM handout)

B,
P(1 ] HOT) 2 P(1] COLD) 5
P(2 | HOT) 4 P(2|coLD)| = | 4
P(3 | HOT) 4 P(3 | COLD) 1

1D Wa A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

This is a stochastic automaton, not a DAG, but we can rewrite it as a DAG



DAG representation for the weather-ice cream model
« We use q,, ¢,, g;to denote the hidden states on day 1, 2, 3 etc.

« We use 0y, 0,, 05 t0 denote the observations on day 1, 2, 3 etc.

» The g; can take one of two values {hot, cold}

e The
o; can be one of three values {1,2,3} (number of ice — creams)

:Yowf 0 @ P(,Q,/%;;afg lol 1727 05)_
dip € ibwkom P(a;)9,)
llpcx | Parrlilr K A9 ) 91) P41,

®  P(o, 19,) PO, 1%) P
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IO The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3.
Hidden states are in circles, observations in squares. The figure shows the computation of ¢ (j) for two states at

N

two time steps. The computation in each cell follows Eq. A.12: o4 (j) = > ;— 0%—1(i)aijbj(0;). The resulting

probability expressed in each cell is Eq. A.11: o4 (j) = P(01,02...0:,q; = J|).




The ¢ update algorithm

o (j) =P(oy1,00...0t,q: = J|A) (A.11)

Here, g; = j means “the 1N state in the sequence of states is state ;7. We compute
this probability o;(j) by summing over the extensions of all the paths that lead to
the current cell. For a given state g ; at time ¢, the value o, (/) is computed as

N
o (j) = Zar—l (i)aijbj(or) (A.12)
=1

The thrge factors that are multiplied in Eq. A.12 in extending the previous paths
to compute the forward probability at time 7 are

o;—1(i)  the previous forward path probability from the previous time step
aj; the transition probability from previous state g; to current state g;

bi(or) the state observation likelihood of the observation symbol o; given
the current state j



The Viterbi Algorithm: Sum replaced by Max

vi(J) = , malx P(qi...qi—1,01,02...01,q; = j|A) (A.13)
q1seees qdi—1
Note that we represent the most probable path by taking the maximum over all

possible previous state sequences max . Like other dynamic programming algo-
q15--4qt—1

rithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time ¢t — 1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state ¢; at time 7, the value v; () is computed as

. N ,
vi(j) = maxv_i(i) aij bj(oy) (A.14)

i=1

The three factors that are multiplied in Eq. A.14 for extending the previous paths to
compute the Viterbi probability at time 7 are

v;—1(i)  the previous Viterbi path probability from the previous time step
ay the transition probability from previous state g; to current state g;

bj(or) the state observation likelihood of the observation symbol o, given
the current state j
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DT MW  The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 / 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal

transitions. The figure shows the computation of v;(j) for two states at two time steps. The computation in each
cell follows Eq. A.14: v;(j) = maxi<j<y—_1v;—1(i) aij bj(0r). The resulting probability expressed in each cell
is Eq. A.13: v;(j) = P(90,91;---,G:—1,01,02,-..,0¢,qr = J|A).




The Viterbi backtrace
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I  The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.



