
CS 189/289
Today’s lecture:

•Maximum likelihood estimation (MLE)



Recall from last class:
Problem of digit classification from handwriting: is    thi a “7”, yes or no?

• 60K training examples of digits (6K per class)
• Each digit is a 28 x 28 pixel grey level image. 
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Recall from last class:

•One of the main ways to “learn” (aka estimate) the 
setting of “good” parameters in statistical models:
• Principle of Maximum Likelihood Estimation (MLE).
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• Training data set: 𝑥 ∈ 𝑅
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• Training data set:

• Model class:
aka hypothesis class

• Optimization goal: find “good” values 
of parameters ( ). 
But was does “good” mean?
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ML: main abstract ideas
• Training data set:

• Model class:
aka hypothesis class

• Optimization goal: find “good” values 
of parameters ( ). 
But was does “good” mean?
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• Loss Function:

• Learning Objective: 

L(a,b)  (ab)2 Squared Loss
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𝑥 ∈ 𝑅
𝑦 ∈ 𝑅 or   𝑦 ∈ 1,1



Maximum Likelihood Estimation (MLE)
This principle gives a useful, principled and widely-used loss 
function to estimate parameters of statistical models (from linear 
regression, to neural networks, and beyond).



Reminder: probability distributions
Random variable (RV) is a function: e.g. heads
1. Discrete RV, e.g. coin toss heads/tails.
2. Continuous RV, e.g. height

Discrete RVs have a Probability 
Mass Function (PMF)

Continuous RVs have a Probability 
Density Function (PDF)

integrates to 1  
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1. Bernouilli RV—model the toss of a coin that can be biased

, parameter is .
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e.g. distributions of discrete RVs
1. Bernouilli RV—model the toss of a coin that can be biased

, parameter is .
2. Binomial RV—model number of heads, , of biased coin 

tosses.

3. Poisson RV– model number of mutations, , occurring in a cell 
population with mean mutation rate, , over fixed time interval



Distributions of continuous RVs
Continuous RVs have a Probability Density Function



Multivariate distributions
Space of outcomes is a vector instead of a scalar:
Multinomial (generalization from binomial): 
• urn with balls of different colors. 
• Pick a ball at random.
• it is green, it is blue and it is red

Multivariate Gaussian:
• Mean is a vector, and variance becomes covariance.
• Will learn more about this next lecture.
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The basic set-up of MLE
• Given data for
• Assume a set (family) of distributions on , .
• Assume contains samples from one of these distributions: 

• This assumes that each element of is identically and independently 
distributed (iid).

Goal of MLE: “learn”/estimate the value of that 
defines the distribution from which the data came.

Definition: is a MLE for with respect to the data and 
set of distributions, if 

∈
.
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The basic set-up of MLE
• Given data for
• Assume a set (family) of distributions on , .
• Assume contains samples from one of these distributions: 

∈

Is there always one unique 
MLE parameter value?



Some properties of MLE

• The MLE is a consistent estimator: meaning that as we get 
more and more data (drawn from one distribution in our 
family), then we converge to estimating the true value of 
for .

• The MLE is statistically efficient: it’s making good use of the 
data available to it ( “least variance” parameter estimates).

• The value of is  invariant to re-parameterization.
• MLE can still yield a parameter estimate even when the data 

were not generated from that family (phew & caveat emptor).



e.g. MLE for univariate Gaussian

• Arguments can be made from the Central Limit Theorem that height is 
normally distributed.
• Suppose you were given a set if height measurements, , how would 

you derive the estimate for the mean and variance, using MLE?



e.g. MLE for univariate Gaussian
Goal: 

∈
from set of data

• Assume data are generated as 
• So assume MLE family of distributions, .
• Now our goal is to find 

∈
.

• First step, write down the likelihood function:
• .

• The product of the terms is a little inconvenient to work 
with.



e.g. MLE for univariate Gaussian
• Likelihood: .

• The log likelihood (“LL”) is a monotonically increasing function of 
the likelihood.

• Therefore 
∈ ∈



e.g. MLE for univariate Gaussian
• Now we have a concrete optimization problem to work with:

∈
,

• How will we solve this optimization problem?
• Find a setting of the parameters for which the partial derivatives are 

0 (i.e., a stationary point).
• Then check whether the setting is a maximum (negative second 

derivative), a minimum, etc. (first year calculus).
• (if #params>1, check if Hessian is negative definite; for 1D Gaussian, 

Hessian is diagonal, so can check each separately).
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• Find the setting of the parameters that set the partial derivatives to 
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• Lets expand out so we can take the derivative:
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• Find the setting of the parameters that set the partial derivatives to 
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• Lets expand out so we can take the derivative:
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e.g. MLE for univariate Gaussian
• Again, but this time for 

𝑁 𝑥 𝜇,𝜎
1

2𝜋𝜎
𝑒𝑥𝑝

𝑥 𝜇
2𝜎

𝜇 ,𝜎 𝑎𝑟𝑔𝑚𝑎𝑥 log𝑁 𝑥 𝜇,𝜎



MLE yields a “point estimate” of our parameter
• When we perform MLE, we get just one single estimate of 

the parameter, , rather than a distribution over it which 
captures uncertainty.

• In Bayesian statistics, we obtain a (posterior) distribution 
over . We will touch more on this in a few lectures.
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e.g. MLE for the multinomial distribution
• Consider a six-sided die that we will roll, and we want to know the probability of each side of the 

die turning up (𝜃 𝜃 …𝜃 ).
• Assume we have observed 𝑁 rolls, with RV, 𝑋 ∼ 𝑝 𝑋 .
• We write that 𝑃 𝑋 𝑘 𝜃 𝜃 (when 𝑘 side faced up).
• Lets use MLE to estimate these parameters.
• First, since one side must always face up, we know that 1 ∑ 𝜃 .
• Second, we can write 𝑃 𝑋 𝑥 𝜃 𝜃 (pick off the right parameter).
• Now we write the likelihood:

𝑃 𝐷 𝜃 𝑝 𝑥 , … 𝑥 𝜃 𝑝 𝑥 𝜃 𝜃 𝜃∑ 𝜃𝑝 𝑥 𝜃 𝜃 𝜃∑ 𝜃

Now our MLE problem becomes:

∈ ∈ | ∑



e.g. MLE for the multinomial distribution
Have a constrained optimization problem:

∈ ∈ | ∑

What is one technique you should have learned in first year calculus to 
solve this? 

The technique of Lagrange multipliers:
) (look for stationary points wrt )



e.g. MLE for the multinomial distribution
)

1. (we just get the constraint back)

- .

3. Lets plug this into 1), 

4. All together then, .



Doing MLE requires optimization
• For Gaussian, multinomial (and more), the MLE can be 

obtained in closed form by setting the derivative to zero.
•What if we had a model such as Prof. Malik mentioned in the 

first lecture?
• Here, we need iterative

optimization (can take entire 
classes on special cases of this 
(e.g. Convex Optimization). 
More later.

𝜃 argmax
∈

log 𝑝 𝐷|𝜃



Prof. Malik in first lecture:
•Mentioned that a good loss to estimate parameters is the cross-

entropy (rather than the likelihood).
• So why are we teaching you MLE?! They are equivalent.



• The cross-entropy is a term from information theory.
• To understand the connection between MLE and 

maximizing the cross-entropy, we need to know some 
concepts from information theory:
1. Entropy
2. Cross-entropy
3. KL-divergence (relative entropy).

Relationship between likelihood, cross-entropy, etc.



Entropy: a measure of expected surprise
Think about a flipping a coin once, and how surprised you 
would be at observing a head. 



Entropy: a measure of expected surprise
• The “surprise” of observing that a discrete random variable 

takes on value is:

• As , the surprise of observing approaches .
• As , the surprise of observing approaches .
• The entropy of the distribution of is the expected surprise:



Entropy example: flipping a coin



Entropy of a random variable  :

https://www.researchgate.net/figure/Hypothetical‐distributions‐of‐
term‐frequency‐in‐high‐and‐low‐entropy‐corpora_fig1_305417514



From Entropy to Relative Entropy
• Also called the Kullback-Leibler (KL) Divergence.
• Measures how much one distribution diverges from another.
• For discrete probability distributions, and , it is defined as:

• Not a true distance metric because not symmetric in and :

https://www.cs.ox.ac.uk/people/varun.kanade/teaching/ML‐MT2016/slides/slides03.pdf
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• Consider data, where and a model with params , .
• If minimizing the KL divergence (instead of MLE), 

||

̂ ]



From Relative Entropy to Cross-Entropy (then to MLE!)
• Performing MLE maximizes the likelihood function.
• This is equivalent to maximizing the cross-entropy.
• And equivalent to minimizing the KL-divergence (aka relative entropy).



Extra



e.g. MLE for the multinomial distribution
) (look for stationary points wrt )

(we just get the constraint back)

- .

3. Lets plug this into 1: 

4. All together then, .
This is a stationary point. But is it a maximum? Could check Hessian, but lets 
instead consider our know equivalence

|


