CS 189/289

Today's lecture:

- Maximum likelihood estimation (MLE)

Recall from last class:

Problem of digit classification from handwriting: is
a "7", yes or no?

- 60K training examples of digits (6K per class)
- Each digit is a 28×28 pixel grey level image.

Recall from last class:
Problem of digit classification from handwriting: is a "7", yes or no?

Recall from last class:

Recall from last class:

Linear classifier rule

- One of the main ways to "learn" (aka estimate) the setting of "good" parameters in statistical models:
- Principle of Maximum Likelihood Estimation (MLE).

ML: main concepts

- Training data set:

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

ML: main abstract ideas

- Training data set:

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \begin{aligned}
& x_{i} \in R^{D} \\
& y_{i} \in R \text { or } y_{i} \in\{-1,1\} \\
& \hline
\end{aligned}
$$

"labe|"
provides
supervision

$$
\frac{D=\left\{\left(x_{i}\right)\right\}_{i=1}^{N} \quad \text { UNSUPERVISED }}{x_{i} \in R^{D}}
$$

ML: main abstract ideas

- Training data set:

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \begin{gathered}
x_{i} \in R^{D} \\
y_{i} \in R \text { or } y_{i} \in\{-1,1\}
\end{gathered}
$$

- Model class: aka hypothesis class

$$
f(x \mid w, b)=w^{T} x+b
$$

Linear Models

ML: main abstract ideas

- Training data set:

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \begin{gathered}
y_{i} \in R^{D} \\
\text { or } \quad y_{i} \in\{-1,1\}
\end{gathered}
$$

- Model class: aka hypothesis class

$$
f(x \mid w, b)=w^{T} x+b
$$

Linear Models

- Optimization goal: find "good" values of parameters (w, b).
But was does "good" mean?

ML: main abstract ideas

- Training data set:

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N} \quad \begin{gathered}
x_{i} \in R^{D} \\
y_{i} \in R \text { or } y_{i} \in\{-1,1\}
\end{gathered}
$$

- Model class: aka hypothesis class

$$
f(x \mid w, b)=w^{T} x+b
$$

Linear Models

- Loss Function:

$$
L(a, b)=(a-b)^{2}
$$

- Learning Objective:

$$
\underset{w, b}{\operatorname{argmin}} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)
$$

Maximum Likelihood Estimation (MLE)

This principle gives a useful, principled and widely-used Joss
negarive positive function to estimate parameters of statistical models (from linear regression, to neural networks, and beyond).

- Training data set:

$$
D=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

$$
x_{i} \in R^{D}
$$

$$
y_{i} \in R \quad \text { or } \quad y_{i} \in\{-1,1\}
$$

- Model class:
aka hypothesis class
$f(x \mid w, b)=w^{T} x+b$
Linear Models
- Loss Function:

$$
L(a, b)=(a-b)^{2}
$$

Squared Loss

- Learning Objective:

$$
\underset{w, b}{\operatorname{argmin}} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i} \mid w, b\right)\right)
$$

Reminder: probability distributions

Random variable (RV) is a function: $\mathrm{x} \rightarrow \mathbb{R}$
e.g. p (heads) $=0.5$

1. Discrete RV, e.g. coin toss heads/tails.
2. Continuous RV, e.g. height

Discrete RVs have a Probability Mass Function (PMF)

Continuous RVs have a Probability Density Function (PDF)

e.g. distributions of discrete RVs

1. Bernouilli RV—model the toss of a coin that can be biased $P($ heads $)=p, \quad P($ tails $)=1-p$, parameter is p.
e.g. distributions of discrete RVs
2. Bernouilli RV—model the toss of a coin that can be biased $P($ heads $)=p, \quad P($ tails $)=1-p$, parameter is p.
3. Binomial RV -model number of heads, \mathbf{k}, of n biased coin tosses.

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

e.g. distributions of discrete RVs

1. Bernouilli RV-model the toss of a coin that can be biased $P($ heads $)=p, \quad P($ tails $)=1-p$, parameter is p.
2. Binomial RV—model number of heads, k , of n biased coin tosses.

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

3. Poisson RV- model number of mutations, k, occurring in a cell population with mean mutation rate, λ, over fixed time interval

$$
P(x=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

Distributions of continuous RVs
Continuous RVs have a Probability Density Function

$$
\begin{aligned}
\int_{x_{1}}^{x_{2}} p(x) d x= & \text { Prob that the random variable } \\
& \begin{array}{l}
\text { X has a value in the } \\
\text { interval }\left[x_{1} \ldots x_{2}\right]
\end{array}
\end{aligned}
$$

Examples:

Parameters: a, b
2. Gaussian $P(x)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-1 / 2 \frac{(x-\mu)^{2}}{\sigma^{2}}\right)$ Parameters: μ, σ

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

Multivariate distributions

Space of outcomes is a vector instead of a scalar:
Multinomial (generalization from binomial):

- urn with balls of different colors.
- Pick a ball at random.
- p_{1} it is green, p_{2} it is blue and p_{3} it is red

Multivariate Gaussian:

- Mean is a vector, and variance becomes covariance.
- Will learn more about this next lecture.

The basic set-up of MLE

- Given data $D=\left\{x_{i}\right\}_{i=1}^{N}$ for $x_{i} \in R^{d}$
- Assume a set (family) of distributions on $R^{d},\left(x \theta_{\theta}(x) \mid \theta \in \Theta\right\}$.
eng mean (μ) and variance $\left(\theta^{2}\right)$ for $x \in \mathbb{R}^{1}$

The basic set-up of MLE

same as

- Given data $D=\left\{x_{i}\right\}_{i=1}^{N}$ for $x_{i} \in R^{d}$
- Assume a set (family) of distributions on $R^{d},\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}$.
- Assume D contains samples from one of these distributions:

$$
x_{i} \sim p_{\hat{\theta}}(x)
$$

- This assumes that each element of D is identically and independently distributed (iid).

The basic set-up of MLE

- Given data $D=\left\{x_{i}\right\}_{i=1}^{N}$ for $x_{i} \in R^{d}$
- Assume a set (family) of distributions on $R^{d},\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}$.
- Assume D contains samples from one of these distributions:

$$
x_{i} \sim p_{\hat{\theta}}(x)
$$

- This assumes that each element of D is identically and independently distributed (lid).
Goal of MLE: "learn"/estimate the value of θ that function defines the distribution from which the data came.
Definition: $\theta_{M L E}$ is a MLE for θ with respect to the data and set of distributions, if $\theta_{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(D \mid \theta)$.

The basic set-up of MLE

$$
\theta_{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(D \mid \theta)
$$

$D=\left\{x_{i}\right\}_{i=1}^{N}=\{20.1,33.8,34.6,36.2, \ldots\}$
Note that $p(D \mid \theta)=p\left(\left\{x_{i}\right\}_{i=1}^{N} \mid \theta\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)$
iid

The basic set-up of MLE

- Given data $D=\left\{x_{i}\right\}_{i=1}^{N}$ for $x_{i} \in R^{d}$
- Assume a set (family) of distributions on $R^{d},\left\{p_{\theta}(x) \mid \theta \in \Theta\right\}$.
- Assume D contains samples from one of these distributions:

$$
x_{i} \sim p_{\hat{\theta}}(x)
$$

$\theta_{\text {MLE }}=\operatorname{argmax} p(D \mid \theta)$ $\theta \in \Theta$

Is there always one unique MLE parameter value?

Some properties of MLE

$$
\begin{aligned}
& \text { eg } N(x \mid \mu, t) \\
& N(x \mid 2+u, \sigma)
\end{aligned}
$$

- The MLE is a consistent estimator: meaning that as we get more and more data (drawn from one distribution in our family), then we converge to estimating the true value of θ for D.
- The MLE is statistically efficient: it's making good use of the data available to it ("least variance" parameter estimates).
- The value of $p\left(D \mid \theta_{M L E}\right)$ is invariant tore-parameterization.
- MLE can still yield a parameter estimate even when the data were not generated from that family (phew \& caveat emptor).

e.g. MLE for univariate Gaussian

- Arguments can be made from the Central Limit Theorem that height is normally distributed.
- Suppose you were given a set if height measurements, $\left\{x_{i}\right\}$, how would you derive the estimate for the mean and variance, using MLE?

e.g. MLE for univariate Gaussian

Goal: $\theta_{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(D \mid \theta)$ from set of data $D=\left\{x_{i}\right\}_{i=1}^{N}$

- Assume data are generated as $X \sim N\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{(x-\mu)^{2}}{2 \sigma^{2}}$
- So assume MLE family of distributions, $p(X=x \mid \theta)=N\left(X \mid \mu, \sigma^{2}\right)$.
- Now our goal is to find $\theta_{M L E}=\left(\mu_{M L E}, \sigma_{M L E}^{2}\right)=\underset{\theta \in \Theta}{\operatorname{argmax}} p\left(D \mid \mu, \sigma^{2}\right)$.
- First step, write down the likelihood function:
- $p(D \mid \theta)=p\left(x_{1}, x_{2}, \ldots x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \mu, \sigma^{2}\right)$.
- The product of the terms is a little inconvenient to work with.

e.g. MLE for univariate Gaussian

- Likelihood: $p\left(x_{1}, x_{2}, \ldots x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \mu, \sigma^{2}\right)$.

1

- The \log likelihood ("LL") is amonotonically increasing function of the likelihood.

$$
\log p(D \mid \theta)=\sum_{i=1}^{N} \log p\left(x_{i} \mid \mu, \sigma^{2}\right)
$$

- Therefore $\theta_{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} p(D \mid \theta)=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)$

e.g. MLE for univariate Gaussian

- Now we have a concrete optimization problem to work with:

$$
\mu_{M L E}, \sigma_{M L E}^{2}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)=\operatorname{argmax} \sum_{i=1}^{N} \log p\left(x_{i} \mid \mu, \sigma^{2}\right)
$$

-How will we solve this optimization problem?

- Find a setting of the parameters for which the partial derivatives are 0 (i.e., a stationary point).
- Then check whether the setting is a maximum (negative second derivative), a minimum, etc. (first year calculus).
- (if \#params>1, check if Hessian is negative definite; for 1D Gaussian, Hessian is diagonal, so can check each separately).
e.g. MLE for univariate Gaussian
- Find the setting of the parameters that set the partial derivatives to zero:

$$
\begin{aligned}
& \mu_{M L E}, \sigma_{M L E}^{2}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)=\operatorname{argmax} \sum_{i=1}^{N} \log p\left(x_{i} \mid \mu, \sigma^{2}\right) \\
& \partial_{\mu} \sum_{i=1}^{i N} \log p\left(x_{i} \mid \mu, \sigma^{2}\right)=\sum_{i}^{\mu, \sigma^{2}} \sum_{\mu}^{2} \log \left[\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right)\right.
\end{aligned}
$$

e.g. MLE for univariate Gaussian

- Find the setting of the parameters that set the partial derivatives to zero:

$$
\begin{aligned}
& \mu_{M L E}, \sigma_{M L E}^{2}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)=\operatorname{argmax} \sum_{i=1}^{N} \log p\left(x_{i} \mid \mu, \sigma^{2}\right) \\
& \frac{\partial}{\partial} \sum_{\mu}^{i^{\text {Lets }}} \log p\left(x_{i} \mid \mu, \sigma^{2}\right)^{2}=\sum_{i}^{2} \sum_{\mu} \log \left[\sqrt{\sqrt{2 \pi \pi^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right)\right. \\
& =\sum_{i} \frac{2}{\partial u}\left[-\log \left(\sqrt{2 \pi \sigma^{2}}\right)-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right] \\
& =\sum_{i}\left[0+\frac{1}{\sigma^{2}}\left(x_{i}-\mu\right)\right] \stackrel{\text { set to zero }}{\Rightarrow} \sum_{i} x_{i}=\sum_{i} \mu \quad \begin{array}{l}
\sum_{i} x_{i}=N \mu \\
\Rightarrow \mu \frac{\sum_{i} x_{i}}{N}
\end{array}
\end{aligned}
$$

e.g. MLE for univariate Gaussian

$$
\begin{aligned}
& d^{2} \text {. Fitcuat the setting of the parameters that set the partial derivatives to } \\
& \underset{\mu_{M L E},}{2 M^{2} \text { zero: }} \sigma_{M L E}^{2}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)=\operatorname{\mu rgmax} \sum_{i=1}^{N} \log p\left(x_{i} \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i} \frac{\partial}{\partial \mu}\left[-\log \left(\sqrt{2 \pi \sigma^{2}}\right) \left\lvert\,-\frac{1}{2 \sigma^{2}}\left(x_{i}-u\right)^{2}\right.\right] \\
& =\sum_{i}\left[0+\left(\frac{T^{2}}{6^{2}}\left(x_{i}-\mu\right)\right) \Rightarrow \frac{\sum_{i}}{\Rightarrow} \sum_{i} x_{i}=\sum_{i} \mu \Rightarrow \Leftrightarrow \mu \frac{\sum_{i} x_{i}}{N}\right.
\end{aligned}
$$

e.g. MLE for univariate Gaussian
e.g. MLE for univariate Gaussian $N\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \operatorname{erop}-\frac{(x-\mu)^{2}}{2 \sigma^{2}}$

- Again, but this time for σ^{2} :

$$
\mu_{M L E}, \sigma_{M L E}^{2}=\operatorname{argmax} \sum_{i=1}^{N} \log N\left(x_{i} \mid \mu, \sigma^{2}\right)
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{L L}}{\partial \sigma^{2}}=\frac{\partial}{\partial \sigma^{2}}\left(-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right) \\
&=-\frac{N}{2} \cdot \frac{\partial}{\partial \sigma^{2}}\left(\log \left(2 \pi \sigma^{2}\right)\right)+\frac{\partial}{\partial \sigma^{2}}\left(-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right) \\
&=-\frac{N}{2} \cdot \frac{1}{2 \pi \sigma^{2}} \cdot 2 \pi+\frac{\partial}{\partial \sigma^{2}}\left(-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right) \\
&=-\frac{N}{2 \sigma^{2}}+\sum_{n=1}^{N}\left(-\frac{1}{2} \cdot-1 \cdot\left(\sigma^{2}\right)^{-2} \cdot 1 \cdot\left(x_{n}-\mu\right)^{2}\right) \\
&=-\frac{N}{2 \sigma^{2}}\left(-N+\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}\right) \\
& 0=-N+\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}
\end{aligned}
$$

MLE yields a "point estimate" of our parameter

- When we perform MLE, we get just one single estimate of the parameter, θ, rather than a distribution over it which captures uncertainty.
- In Bayesian statistics, we obtain a (posterior) distribution over θ. We will touch more on this in a few lectures.

MLE yields a "point estimate" of our parameter

- When we perform MLE, we get just one single estimate of the parameter, θ, rather than a distribution over it which captures uncertainty.
- In Bayesian statistics, we obtain a (posterior) distribution over θ. We will touch more on this in a few lectures.

MLE yields a "point estimate" of our parameter

- When we perform MLE, we get just one single estimate of the parameter, θ, rather than a distribution over it which captures uncertainty.
- In Bayesian statistics, we obtain a (pi ${ }^{1}$ over θ. We will touch more on this il

e.g. MLE for the multinomial distribution

- Consider a six-sided die that we will roll, and we want to know the probability of each side of the die turning up $\left(\theta=\theta_{1} \ldots \theta_{6}\right)$.
- Assume we have observed N rolls, with $\mathrm{RV}, X \sim p_{\theta}(X)$.
- We write that $P(X=k \mid \theta)=\theta_{k}$ (when $k^{t h}$ side faced up).
- Lets use MLE to estimate these parameters.
- First, since one side must always face up, we know that $1=\sum_{k} \theta_{k}$.
- Second, we can write $P(X=x \mid \theta)=\theta_{x}$ (pick off the right parameter).

$$
\eta_{k} \equiv\left|\left\{i \mid x_{i}=k\right\}\right|
$$

- Now we write the likelihood:

$$
P(D \mid \theta)=p\left(x_{1}, \ldots x_{N} \mid \theta\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \theta\right)=\prod_{i=1}^{N} \prod_{k=1}^{6} \theta_{k}^{I\left[x_{i}=k\right]}=\prod_{k=1}^{6} \theta_{k}^{\sum_{i}^{N} I\left[x_{i}=k\right]}=\prod_{k=1}^{6}\left(\theta_{k}^{n_{k}}\right)
$$

Now our MLE problem becomes:

$$
\theta_{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)={\left.\underset{\theta \in\left\{\Theta \mid 1=\sum_{k}\right.}{ } \theta_{k}\right\}}_{\operatorname{argmax}}^{\sum_{k=1}^{6} \log \theta_{k}^{n_{k}} \text { optimization }} \begin{gathered}
\text { constrained. } \\
\text { ops }
\end{gathered}
$$

e.g. MLE for the multinomial distribution

Have a constrained optimization problem:

$$
\theta_{M L E}=\underset{\theta \in \Theta}{\operatorname{argmax}} \log p(D \mid \theta)=\underset{\theta \in\left\{\Theta \mid 1=\sum_{k} \theta_{k}\right\}}{\operatorname{argmax}} \sum_{k=1}^{6} \log \theta_{k}^{n_{k}}
$$

What is one technique you should have learned in first year calculus to solve this?

The technique of Lagrange multipliers:
$J(\theta, \lambda)=\log p(D \mid \theta)+\lambda\left(1-\sum_{k} \theta_{k}\right)$ (look for stationary points wrt θ, λ)

e.g. MLE for the multinomial distribution

$J(\theta, \lambda)=\log p(D \mid \theta)+\lambda\left(1-\sum_{k} \theta_{k}\right)=\sum_{k=1}^{6} \log \theta_{k}^{n_{k}}+\lambda\left(1-\sum_{k} \theta_{k}\right)$

1. $\frac{\partial J}{\partial \lambda}=0 \Rightarrow 1=\sum_{k} \theta_{k}$ (we just get the constraint back)
2. $\frac{\partial J}{\partial \theta_{k}}=\frac{\partial}{\partial \theta_{k}} \sum_{k=1}^{6} \log \theta_{k}^{n_{k}}-\frac{\partial}{\partial \theta_{k}} \lambda \theta_{k}=\frac{n_{k}}{\theta_{k}}-\lambda=0 \Rightarrow \theta_{k}=\frac{n_{k}}{\lambda}$.
3. Lets plug this into 1), $1=\sum_{k} \theta_{k}=\sum_{k} \frac{n_{k}}{\lambda} \Rightarrow \lambda=\sum_{k} n_{k}=N$.
4. All together then, $\theta_{k}=\frac{n_{k}}{N}$.

Doing MLE requires optimization $\quad \theta_{\text {MLE }}=\underset{\theta \in \theta}{\operatorname{argmax} \log p(D \mid \theta)}$

- For Gaussian, multinomial (and more), the MLE can be obtained in closed form by setting the derivative to zero.
- What if we had a model such as Prof. Malik mentioned in the first lecture?
- Here, we need iterative optimization (can take entire classes on special cases of this (e.g. Convex Optimization). More later.

Prof. Malik in first lecture:

- Mentioned that a good loss to estimate parameters is the crossentropy (rather than the likelihood).
- So why are we teaching you MLE?! They are equivalent.

Training a single layer neural network

- A good choice of loss function is the cross $L=-\sum_{\text {innut } \operatorname{daj} \tilde{a}}\left(y_{i} \ln O_{i}+\left(1-y_{i}\right) \ln \left(1-O_{i}\right)\right)$
- We model the activation function g as a sigmoid

$$
\mathrm{g}(z)=\frac{1}{1+\exp (-z)}
$$

- Finding w reduces to logistic regression!

We can use STochastic Gradient DESCENT

Relationship between likelihood, cross-entropy, etc.

- The cross-entropy is a term from information theory.
- To understand the connection between MLE and maximizing the cross-entropy, we need to know some concepts from information theory:

1. Entropy
2. Cross-entropy
3. KL-divergence (relative entropy).

Entropy: a measure of expected surprise

Think about a flipping a coin once, and how surprised you would be at observing a head.

$$
p(\text { head })=0.5
$$

$$
p(\text { head })=0
$$

$$
p(\text { head })=0.01
$$

$$
p(\text { head })=1
$$

Entropy: a measure of expected surprise

- The "surprise" of observing that a discrete random variable Y takes on value k is:

$$
\log \frac{1}{P(Y=k)}=-\log (P(Y=k))
$$

- As $P(Y=k) \rightarrow 0$, the surprise of observing k approaches ∞.
- As $P(Y=k) \rightarrow 1$, the surprise of observing k approaches 0 .
- The entropy of the distribution of Y is the expected surprise:

$$
H(Y) \equiv E_{Y}[-\log P(Y=k)]=\sum_{k} P(Y=k) \log P(Y=k)
$$

Entropy example: flipping a coin

$$
\begin{gathered}
H(Y)=-\sum_{i=1}^{\kappa} P\left(Y=y_{i}\right) \log _{2} P\left(Y=y_{i}\right) \\
\mathrm{P}(\mathrm{Y}=\mathrm{t})=5 / 6 \\
\mathrm{P}(\mathrm{Y}=\mathrm{f})=1 / 6
\end{gathered}
$$

$H(Y)=-5 / 6 \log _{2} 5 / 6-1 / 6 \log _{2} 1 / 6$ $=0.65$

Entropy of a random variable Y :

"High Entropy"

$-Y$ is from a uniform like distribution

- Flat histogram
- Values sampled from it are less predictable
"Low Entropy"
$-Y$ is from a varied (peaks and valleys)
 distribution
- Histogram has many lows and highs
- Values sampled from it are more predictable

From Entropy to Relative Entropy

- Also called the Kullback-Leibler (KL) Divergence.
- Measures how much one distribution diverges from another.
- For discrete probability distributions, P and Q, it is defined as:

$$
D_{K L}(P \| Q)=\sum_{x} P(x) \ln \frac{P(x)}{Q(x)}
$$

- Not a true distance metric because not symmetric in P and Q :

$$
D_{K L}(P \| Q) \neq D_{K L}(Q \| P)
$$

Properties of KL Divergence

- $\mathrm{KL}(p \| q) \geq 0$
- KL $(p \| q)=0$ if and only if $p=q$

From Relative Entropy to Cross-Entropy (then to MLE!)

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right]
\end{aligned}
$$

From Relative Entropy to Cross-Entropy (then to MLE!)

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right] \\
& =\underbrace{}_{\text {Cross-entropy }}=H(P, Q)-\underbrace{H(P)}_{\text {entropy }}
\end{aligned}
$$

- Consider data, D where $x_{\mathrm{i}} \sim \hat{p}_{\text {data }}$ and a model with params $\theta, p(x \mid \theta)$.
- If minimizing the KL divergence (instead of MLE), $\left.\left.\operatorname{argmin}_{\theta} D_{K L}\left(\hat{p}_{\text {data }} \| p(x \mid \theta)\right)=\right)\right)=$

From Relative Entropy to Cross-Entropy (then to MLE!)

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right] \\
& =H(P, Q)-\underbrace{H(P)}_{\text {Cross-entropy }} \text { entropy }
\end{aligned}
$$

- Consider data, D where $x_{\mathrm{i}} \sim \hat{p}_{\text {data }}$ and a model with params $\theta, p(x \mid \theta)$.
- If minimizing the KL divergence (instead of MLE),
$\left.\left.\operatorname{argmin}_{\theta} D_{K L}\left(\hat{p}_{\text {data }} \| p(x \mid \theta)\right)=\right)\right)=\operatorname{argmin}_{\theta} H\left(\hat{p}_{\text {data }} p(x \mid \theta)\right)+H\left(\hat{p}_{\text {data }}\right)$

From Relative Entropy to Cross-Entropy (then to MLE!)

$$
\begin{aligned}
D_{K L}(P \| Q) & =\sum_{x} P(x) \log \frac{P(x)}{Q(x)} \\
& =E_{P(x)}\left[\log \frac{1}{Q(X)}\right]-E_{P(x)}\left[\log \frac{1}{P(X)}\right] \\
& =\underbrace{H(P, Q)-H(P)}_{\text {cross-entropy }} \text { entropy }
\end{aligned}
$$

- Consider data, D where $x_{\mathrm{i}} \sim \hat{p}_{\text {data }}$ and a model with paramo $\phi \theta, p(x \mid \theta)$.
- If minimizing the KL divergence (instead of MLE),
$\left.\left.\operatorname{argmin}_{\theta} D_{K L}\left(\hat{p}_{\text {data }} \| p(x \mid \theta)\right)=\right)\right)=\operatorname{argmin}_{\theta} H\left(\hat{p}_{\text {data }}, p(x \mid \theta)\right)+H\left(\hat{p}_{\text {data }}\right)$

$$
=\operatorname{argmax} E_{\hat{p}_{\text {data }}}[\log p(x \mid \theta)]=\operatorname{argmax} \sum_{i}^{N} \log p\left(x_{i} \mid \theta\right) .
$$

From Relative Entropy to Cross-Entropy (then to MLE!)

- Performing MLE maximizes the likelihood function.
- This is equivalent to maximizing the cross-entropy.
- And equivalent to minimizing the KL-divergence (aka relative entropy).

Extra

e.g. MLE for the multinomial distribution

$J(\theta, \lambda)=\log p(D \mid \theta)+\lambda\left(1-\sum_{k} \theta_{k}\right)$ (look for stationary points wry θ, λ)

1. $\frac{\partial J}{\partial \lambda}=0 \rightarrow 1=\sum_{k} \theta_{k}$ (we just get the constraint back)
2. $\frac{\partial J}{\partial \theta_{k}}=\frac{\partial}{\partial \theta_{k}} \sum_{k=1}^{6} \log \theta_{k}^{n_{k}}-\frac{\partial}{\partial \theta_{k}} \lambda \theta_{k}=\frac{n_{k}}{\theta_{k}}-\lambda=0 \rightarrow \theta_{k}=\frac{n_{k}}{\lambda} . \Rightarrow D_{k L}=0$
3. Lets plug this into 1: $\sum_{k} \theta_{k}=1=\sum_{k} \frac{n_{k}}{\lambda} \rightarrow \lambda=\sum_{k} n_{k}=N$. but) $O_{k c} \geq 0$
4. All together then, $\theta_{k}=\frac{n_{k}}{N}$. So we have minize the $D_{k c}$
This is a stationary point. But is it a maximum? Could check Hessian, but lets instead consider our know equivalence

$$
D_{K L}\left(p_{\text {data }} \| p(x \mid \theta)\right)=\sum_{k=1}^{6} P_{\text {data }}(X=k) \log \frac{\left.P_{\text {data }}(X=k)\right)}{(X=k \mid \theta)}>\theta_{k}=\frac{\eta_{1}}{N}
$$

