Markov Chains
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a set of N states

a transition probability matrix A, each a;; represent-
ing the probability of moving from state ¢ to state J, s.t.
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an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.
Some states j may have 7; =0, meaning that they cannot
be initial states. Also, > ., m; = 1



Hidden Markov Models
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a set of N states

a transition probability matrix A, each a;; representing the probability
of moving from state i to state J, s.t. Z]}’:l aij=1 Vi

a sequence of 7' observations, each one drawn from a vocabulary V =
ViV, 05 Vi

a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o; being generated
from a state i

an initial probability distribution over states. 7; is the probability that
the Markov chain will start in state /. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, >\, m; = 1



A Markov Decision Problem

(source: Russell & Norvig)
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Figure 17.1 (a) A simple, stochastic 4 X 3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and —1, respectively, and all other
transitions have a reward of —0.04.




The optimal policy
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Figure 17.2 (a) The optimal policies for the stochastic environment with = — 0.04 for

transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.




The value function corresponding to the optimal policy
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Figure 17.3 The utilities of the states in the 4 x 3 world with y=1 and r= — 0.04 for
transitions to nonterminal states.




reward

R,
§< Rt+1 (
S l Environment I

Figure 3.1: The agent—environment interaction in reinforcement learning.
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Figure 3.1: The agent—environment interaction in reinforcement learning.
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More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0,1,2,3,....2 At each time step ¢, the agent receives
some representation of the environment’s state, S; € 8, where 8 is the set of
possible states, and on that basis selects an action, A; € A(S;), where A(S;)
is the set of actions available in state S;. One time step later, in part as
a consequence of its action, the agent receives a numerical reward, Riy1 €
R C R, and finds itself in a new state, S;,;.> Figure 3.1 diagrams the agent—
environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted 7;, where m;(a|s) is the probability that A, = a if S; = s.



Some examples

* Playing a game like Chess, Go, Backgammon etc.
* Managing your stock portfolio
* Learning to walk

* Managing the inventory at a car-rental company with multiple
locations



The Markov property

Consider how a general environment might respond at time ¢+ 1 to the action taken
at time £. In the most general, causal case, this response may depend on every-
thing that has happened earlier. In this case the dynamics can be defined only by
specifying the complete joint probability distribution:
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for all r, s’, and all possible values of the past events: Sy, Ao, Ri, ..., Si—1, Ai_1,
R, Sy, A;. If the state signal has the Markov property, on the other hand, then the
environment’s response at t+ 1 depends only on the state and action representations
at t, in which case the environment’s dynamics can be defined by specifying only

p(s',r|s,a) =Pr{Sit1 =8, Riy1 =75 = s, 4 = a}, (3:5)

for all 7, s’, s, and a. In other words, a state signal has the Markov property, and is a
Markov state, if and only if (3.4) is equal to p(s’,r|St, A¢) for all ', r, and histories,
So, Ao, R1, ..., St_1, Ai_1, R, S, A¢. In this case, the environment and task as a
whole are also said to have the Markov property.



Markov Decision Processes

A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s, r, is denoted

p(s',r|s,a) = Pr{Siy1=5", Rey1 =1 | S;=3, As=a}. (3.6)



Value function and Q function

Recall that a policy, 7, is a mapping from each state, s € 8, and action, a € A(s),
to the probability 7(a|s) of taking action a when in state s. Informally, the value of
a state s under a policy 7, denoted v;(s), is the expected return when starting in s
and following 7 thereafter. For MDPs, we can define v;(s) formally as
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where E.[-] denotes the expected value of a random variable given that the agent
follows policy 7, and t is any time step. Note that the value of the terminal state, if
any, is always zero. We call the function v, the state-value function for policy .

Similarly, we define the value of taking action a in state s under a policy 7, denoted
qr(s,a), as the expected return starting from s, taking the action a, and thereafter

following policy m:
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We call ¢, the action-value function for policy .



Estimating V.(s) and g,(s, a) from experience

« |f an agent follows policy T and maintains an average, for each state
encountered, of the actual returns that have followed that state, then
the average will converge to the state’s value U (s)

 Similarly, if the agent performs action a in state s, and thereafter
follows policy 7, the average of the returns will converge to g(s,a)

* If we don’t know the transition probabilities explicitly, but have access
to a simulator that is good enough!



The Bellman optimality equation for V(s)
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Value iteration

Initialize array V arbitrarily (e.g., V(s) =0 for all s € 8T)

Repeat
A<+ 0
For each s € §:
v+ V(s)
V(s) < max, Y, . p(s',7|s,a) |[r + 7V (s')]
A < max(A, |lv —V{(s)|)
until A < 6 (a small positive number)

Output a deterministic policy, m =~ 74, such that
7(s) = argmax, ZS,’Tp(S’, r|s,a) [r + 7V(s’)}




Policy iteration (using iterative policy evaluation)

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

. Policy Evaluation
Repeat
A+0
For each s € &:
v+ V(s)
V() = Y 08, rls, w(8)) [r + 1V ()]
A +— max(A, |v—V(s)|)
until A < 6 (a small positive number)

. Policy Improvement
policy-stable <— true
For each s € §:
old-action < m(s)
m(s) < argmax, > . p(s',7|s, a) [r + YV (s')]
If old-action # m(s), then policy-stable < false
If policy-stable, then stop and return V =~ v, and 7w ~ m4; else go to 2




Deep Reinforcement Learning

* In most practical problems there are too many states to be listed explicitly. So we
need to rely on function approximation methods. The policy / value functions are
represented by neural networks. This is called Deep RL.

* There are many ways of learning from past experience. Roughly speaking you
want to do more of the action sequences which give you high reward, and less of
the action sequences which give you low reward. Hence the term “reinforcement”
which originated in the animal learning literature

* One class of methods for training are “policy gradient” methods, of which a
leading example is PPO.

* | recommend the full series on Deep RL hosted by Pieter Abbeel
https://www.youtube.com/watch?v=qaMdN6LS9rA

* https://www.voutube.com/watch?v=tgrciHuNdmQ is a pretty intuitive
introduction to policy gradients from Karpathy




