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Proteins are strings of nucleotides

238 length amino acid sequence:
MSKGEELFTGVVPILVELDGDVNGHKFSVSG
EDFFKS..NSHNVYIMADKQKNGIKVNFKIRH

Green fluorescent protein
(GFP) tolding itselt

¥

[2008 Nobel in chemistry for discovery and development of GFP
Osamu Shimomura, Martin Chalfie and Roger Y. Tsien]


Presenter Notes
Presentation Notes
Listed below are some specific tasks this method can carry out:
Targeted gene mutation
Creating chromosome rearrangement
Study gene function with stem cells
Transgenic animals
Endogenous gene labeling
Targeted transgene addition



o
Protein engineering: therapeutics, environment, etc.

antibody therapeutics gene therapy virus
delivery (AAV)

Oxyge;'aation 'y : .‘ Carboxylation
antibiotics & biofuel  plastic recycling CO, biosequestration (RuBisCO)

production (PKS)


Presenter Notes
Presentation Notes
PKS: Polyketide synthases (enzymes) are an important source of naturally occurring small molecules used for chemotherapy. For example, many of the commonly used antibiotics. Goals: engineering polyketide synthases to produce “green” antibiotics, pharmaceuticals, and novel biofuels.
PETase are enzymes that catalyze the hydrolysis of PET (polyethylene terephthalate), from its polymers into constituent monomers which can then be used to recycle into new products.
RuBisCo: enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. it may be possible to improve photosynthetic efficiency by modifying RuBisCO genes in plants to increase catalytic activity and/or decrease oxygenation rates.[33][34][35][36] This could improve biosequestration of CO2. (Ribulose-1,5-bisphosphate carboxylase-oxygenase). RuBisCO is the most abundant protein in leaves, accounting for 50% of soluble leaf protein (and most abundant protein on earth).


Protein Structure Prediction

MEKVNFLKNGVLRLPPGFRFRPTDEELVVQYLKRKVFSFPLPASIIPEVEVYKSDPWDLPGDMEQEKYFFSTK
EVKYPNGNRSNRATNSGYWKATGIDKQIILRGRQQQQQLIGLKKTLVFYRGKSPHGCRTNWIMHEYRLAN
LESNYHPIQGNWVICRIFLKKRGNTKNKEENMTTHDEVRNREIDKNSPVVSVKMSSRDSEALASANSELKK

l

Has been studied several decades

[slide from Jinbo Xu, TTI]



Amino acid sequence determines protein 3D structure

Christian Anfinsen
Nobel Prize in Chemistry 1972

3.

© Burkhard Rost
rostLAs OTUTILE

3/51



Presenter Notes
Presentation Notes
In 1961, he showed that ribonuclease could be refolded after denaturation while preserving enzyme activity, thereby suggesting that all the information required by protein to adopt its final conformation is encoded in its amino-acid sequence. 


Protein Structure Prediction

State of the Art Until 2015

* A lot of computing power needed

* Success rate is low even for small proteins

nature news home news archive | specials opinion | features news blog naftu

i comments on this Published online 14 Qctober 2010 | Nature | doi:10.1038/news.2010.541
= story m

Supercomputer sets protein-folding

Stories by subject record
« Cell and molecular
biclogy Faster simulations follow protein movements for longer.

[slide from Jinbo Xu, TTI]



2020

State-of- g ¢
the-art is 8-

K
deep 22
earning co
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2006 2008 2010 2012 2014 2016 2018 2020

B — Contest year
onature ¥


Presenter Notes
Presentation Notes
GDT: The “Global distance test” score is calculated as the largest set of amino acid residues' alpha carbon atoms in the model structure falling within a defined distance cutoff of their position in the experimental structure, after iteratively superimposing the two structures.


AlphaFold?2 relies on previous key insights

Amino acids in direct physical contact tend to
covary or “coevolve” across related proteins

For example, a
mutation that causes
one amino acid to get
bigger is more likely to
. preserve protein

+ structure and function
'+ (and thus survive) if
%" another amino acid
- gets smaller to make
space

[slide from Jinbo Xu, TTI]
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Presenter Notes
Presentation Notes
AlphaFold2 predicts the 3D coordinates of all heavy atoms 
Input: amino acid sequence; aligned homologues (MSA);

Trunk:
The pink matrices are essentially “refined” MSA sequences.
The blue matrices are essentially “refined” residue pair “closeness”.

Structure module:
Introduces an explicit 3D structure (a rotation and translation for each residue, uses equivariant transformer, and a loss that places significant weight on orientational correctness.

“Recycling”: both within the structure module, and throughout, they use “iterative refinement” by repeatedly applying the final loss to outputs, and then feeding the outputs recursively through the same modules.

New equivariant attention architecture that uses intermediate losses to achieve iterative refinement of predictions.
Masked MSA loss to jointly train with structure
Learning from unlabeled protein sequences using self-distillation
Self-estimates of accuracy
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Presenter Notes
Presentation Notes
AlphaFold2 predicts the 3D coordinates of all heavy atoms 
Input: amino acid sequence; aligned homologues (MSA);

Trunk:
The pink matrices are essentially “refined” MSA sequences.
The blue matrices are essentially “refined” residue pair “closeness”.

Structure module:
Introduces an explicit 3D structure (a rotation and translation for each residue, uses equivariant transformer, and a loss that places significant weight on orientational correctness.

“Recycling”: both within the structure module, and throughout, they use “iterative refinement” by repeatedly applying the final loss to outputs, and then feeding the outputs recursively through the same modules.

New equivariant attention architecture that uses intermediate losses to achieve iterative refinement of predictions.
Masked MSA loss to jointly train with structure
Learning from unlabeled protein sequences using self-distillation
Self-estimates of accuracy
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Presenter Notes
Presentation Notes
AlphaFold2 predicts the 3D coordinates of all heavy atoms 
Input: amino acid sequence; aligned homologues (MSA);

Trunk:
The pink matrices are essentially “refined” MSA sequences.
The blue matrices are essentially “refined” residue pair “closeness”.

Structure module:
Introduces an explicit 3D structure (a rotation and translation for each residue, uses equivariant transformer, and a loss that places significant weight on orientational correctness.

“Recycling”: both within the structure module, and throughout, they use “iterative refinement” by repeatedly applying the final loss to outputs, and then feeding the outputs recursively through the same modules.

New equivariant attention architecture that uses intermediate losses to achieve iterative refinement of predictions.
Masked MSA loss to jointly train with structure
Learning from unlabeled protein sequences using self-distillation
Self-estimates of accuracy



AlphaFold?2 “almost end-to-end” neural network

« Can end up with atom positions in violation of physics.

* Thus relies on old style energy-based approaches to
refine the predicted 3D coordinates.

Relaxation © 2020 DeepM ind Technolog ies

= The end result of iterative refinement is not Skeric vialakioh

guaranteed to obey all stereochemical . '
constraints W

= Violations of these constraints are resolved

with coordinate-restrained gradient descent g{ S ! f

=  We use the Amber ffO9SB force field' with
OpenMM?

Blue: post-relax



AlphaFold?2 “almost end-to-end” neural network

~ Bl

» AlphaFold2
Next Best Method

From great blog by Mohamed Alguraishi:

https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-
it-feels-like-ones-child-has-left-home/



Some thoughts on Alphafold?

* DeepMind took on a long-tackled, well-defined
problem, with clear data, clear benchmarks, and a clear
way to demonstrate improvement.

* Expense of protein structure data used for AlphaFold?,
conservatively estimated at ~US$20 billion (Burley et al.,, 2023).

* They relied heavily on years of prior work in protein
folding research: "template-based modelling”,

"‘evolutionary co-evolution modelling”, “contact
prediction”, energy-functions.
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o
Protein engineering: therapeutics, environment, etc.

antibody therapeutics gene therapy virus
delivery (AAV)

Oxyge;'aation 'y : .‘ Carboxylation
antibiotics & biofuel  plastic recycling CO, biosequestration (RuBisCO)

production (PKS)


Presenter Notes
Presentation Notes
PKS: Polyketide synthases (enzymes) are an important source of naturally occurring small molecules used for chemotherapy. For example, many of the commonly used antibiotics. Goals: engineering polyketide synthases to produce “green” antibiotics, pharmaceuticals, and novel biofuels.
PETase are enzymes that catalyze the hydrolysis of PET (polyethylene terephthalate), from its polymers into constituent monomers which can then be used to recycle into new products.
RuBisCo: enzyme involved in the first major step of carbon fixation, a process by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. it may be possible to improve photosynthetic efficiency by modifying RuBisCO genes in plants to increase catalytic activity and/or decrease oxygenation rates.[33][34][35][36] This could improve biosequestration of CO2. (Ribulose-1,5-bisphosphate carboxylase-oxygenase). RuBisCO is the most abundant protein in leaves, accounting for 50% of soluble leaf protein (and most abundant protein on earth).


Fundamental difficulty: design space is nearly infinite

* Also highly rugged design space
= size scales as ~20*

» Discrete search space (no gradients)

HRLH.L LESANVIALTDMMEYPAVOLOE T
KTLEGLIKSKPYYATYDMMDYVPAPQLOQE T
EELAHNLIKSYPYIALYDYSSMPAYPLSOM
EELAKL IKSYPYIALYDYSS5MPAYPLSOM
EELAHNLIKSYPYVALYDVYSSMPAYPLSOM

| y

HHH = =

I L

Number of sequences

10122 -

10106 -

1090 -

1074 -

1058 -

1042 -

1026 -

1010 -

Hatoms in
universe ~108°

#grains of sand
on earth ~1018

100



Successes in navigating this complex space

1. Nature: via evolution over millions of years.

human
dog horse ,donkey it kangaroo
pig '
chicken
: A Y | duck
: . \:\-;:.; ‘ pigeon 110 1.0
\ v
N2 s 1NV
1.2 8
55 16.5
i
17..

MSKGEELFTGVVPILV
ELDGDVNGHKFSVSG

EGEGDATYGKLTLKFIC )

TTGKLPVPWPTLVTTF
SYGVQCFSRYPDHMK
QHDFFKSAMPEGYVQ
ERTIFFKDDGNYKTRA
EVKFEGDTLVRIELKGI
DFKEDGNILGHKLEYN
YNSHNVYIMADKQKN
GIKVNFKIRHNIEDGSV
QLADYQQNTPIGDGPV
LLPDNHYLSTQSALSK
DPNEKRDHMVLLEFVT
AAGITHGMDELYK

green fluorescent
protein folding itself



.

Successes in navigating this complex space

2. Various protein engineering strategies.


Presenter Notes
Presentation Notes
Cytochrome C phylogeny



o
Protein engineering strategies emerging

. Computation (“data free"): physics-based
energy functions (e.g., Rosetta) to model
protein structure, and protein binding.
~199/7-2023'ish (almost R.|.P)

i. Wetlab: directed evolution to iteratively
directly design property of interest.
~1993-present (2018 Nobel Prize]

. Machine learning (augmented): generative
models; function prediction; structure
prediction, etc. ~2018(?)-present



Presenter Notes
Presentation Notes
2. Computation:
Search through large combinatorial space using MCMC.
Requires that engineering goal is dictated by structure in known manner (e.g. via binding), and that the energy function is accurate enough for desired goal.
Not automated: typically requires deep protein expertise (human in-the-loop).
2. Directed evolution. 
Search through space by making actual proteins, making small moves, and then measure in the lab. Move greedily.
Requires good starting protein, sensible ways to make small moves, and ability to measure what you care about, but need not be dictated by structural knowledge.



2018 Nobel Prize
in Chemistry

Goal: get same results with
fewer measurements, and/or,
get better result than pure DE.

1. Replace assay with
oredictive model.
2. Replace search with
intelligent search.




Did AlphaFold?2 “solve” protein engineering?

NEWS | 22 July 2021

DeepMind’s Al predicts structures T st i A -
. aro
for a vast trove Ofprotelns Q) o sssssimmiisnis s S S hr I \ ......
AlphaFold neural network produced a ‘totally transformative’ database of more than 350,000 BOKA score above 90 ______________________________________________
structures from Homo sapiens and 20 model organisms. "g)'; ’a‘ |S COﬂSldered roughly
e oo ';; g) 70 ...... equiva lent tO the .......... AlhaFOld ...............
v f sequence— structure g 60 experimentally ............ pos i B
8 ® determined structure
) e
T P
©
Q0
L0
O -

2006 2008 2010 2012 2014 2016 2018 2020
Contest year



Presenter Notes
Presentation Notes
Also not great at predicting bound conformations, especially when binding requires conformational change, and to DNA/RNA


Did AlphaFold?2 “solve” protein engineering?

NEWS | 22 July 2021

DeepMind’s Al predicts structures e NO' don't typicaHy know which
for avast trove of proteins Hrotein structures we need.

AlphaFold neural network produced a ‘totally transformative’ database of more than 350,000

structures from Homo sapiens and 20 model organisms. .
» It did, would need:
sequence— structure

Ewen Callaway

y f =

structure—seqguence.
(decent ML solutions exist).

» Bottleneck challenge: predict
which protein have the function
we desire.

* AlphaFold?2 was a breakthrough,
and will surely be useful.



Presenter Notes
Presentation Notes
Also not great at predicting bound conformations, especially when binding requires conformational change, and to DNA/RNA


A suite of ML protein engineering problems

Sequence

MSRAAQLLPG
TWQVTMTNE
DGQTSQGQW

HFQPRSPYTL
DIVAQG ......

b
~°

Structure Function

function
prediction



Presenter Notes
Presentation Notes
Fitness prediction may happen via structure, or straight to sequence.


A suite of ML protein engineering problems

Sequence
Design tasks .o -~ P
Q
GQ“% TWQVTMTNE o Cx
A DGQTSQGQW & o
Q) HFQPRSPYTL = T
3\ DIVAQG ...... & B
~
;0 O T
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backbone
design

Function

Structure



Some trends in ML + protein engineering

MVNIREP

1. Representation learning:
un(self)supervised learning on large- s
scale databases (millions of natural -

oroteins, with e.g., Transformers), or |
families. \i‘/

v
* This is really (approx.) density estimation, —— D* ’

Fit top

g (sequence) through a bottleneck. -


Presenter Notes
Presentation Notes
(for me, self-supervised is proxy to unsupervised)
Probably helpful, but not game-changing.

representation coming from a latent variable, 𝑧, which may or may not be treated stochastically.
Motivation: may able to better build supervised models on top of good representation (e.g. “Low N protein engineering”, NBT, Biswas et al)
Problem: often simple baselines compare favorably to giant, expensive modern day ML models (e.g. our 2021 NBT paper, Hsu et al).



Some trends in ML + protein engineering

2. (Conditional) generative models tfor sequences.

This is really (conditional) density estimation, pg(sequence|C),
(e.g. auto-regressive Transtormer, Potts/VAE).

a) structure-conditioned,
a |<a ! | nve rse -I:O | d | n g ! MVLSPADKTNVKAAWGKVGAHAGEYG

AEALERMFLSFPTTKTYFPHFDLSHGS

b) //COI,TU,.O| tag " COnd |tloned/ AQVKGHGKKVADALTNAVAHVDDMPN

ALSALSDLHAHKLRVDPVNFKLLSHCL

orotein family =

e
e
Sy
]
]
ﬁ‘
i —————

Inverse folding 2


Presenter Notes
Presentation Notes
Probably helpful, b) more doubtful.
Although successes, often much post hoc filtering, focused on one well-understood family, produces similar function, not better, with low sequence similarity.  Comparison to baseline approaches not rigorous.


Some trends in ML + protein engineering
3.

(Conditional) generative models for structure.

This is really (conditional) density estimation,
pg (backbone|F), (e.g. "Diffusion” models latest trend).

Only as good as function prediction, p(F|backbone).
Paired with inverse-folding to get sequence.

Collapsed Generation. Reverse Polymer Diffusion

. Protein
polymer ~_ complex
system Training. Forwards Polymer Diffusion backbone

L
&
+ ("1
®
\“u o L
L T
) - ' o -r
TV 3
A TN R T
*7 e - Tl
s Wy 4
L TE o [}
L N 4
-
i
5
)

[Ingraham et al. bioRxiv 2022]



Presenter Notes
Presentation Notes
Either need good classifier for function, or need to know and condition on active site.
Cleverly use AlphaFold2 to reverse diffuse, or use tons of smart stuff, like John Ingraham.


Some trends in ML + protein engineering

4. ML to estimate function from sequence and/or function:

*e.g., pg(F|sequence). anen
» Few or no labelled data.

dog horse_ donkey

. rabbit kangaroo
PIg '

* Leverage evolutionary Y S [ PN e
information*, or large
unsupervised models on pan-
oroteomic database.

*key part of AlphafFola?


Presenter Notes
Presentation Notes
Strategies: 
Model 𝑝(𝑥) on “evolutionary data set, and assume that 𝑝(𝑦|𝑥) is monotonic with 𝑝 𝑥 --”MSA modeling”.
Model 𝑝(𝑦|𝑥) using better inductive biases (e.g. “Epistatic networks”, Aghazadeh, 2021)

Problem: The inversion step is non-trivial for large sequence space; model is not accurate far from the training data.



Some trends in ML + protein engineering

5. Structure prediction: Tilling the gaps left by AlphaFold?

» Orphan proteins (with no/few homologs).
* Proteins in bound form.

» Protein dynamics and
conformational distributions.

* Protein-protein binding.
» Protein-DNA/RNA binding




.

ML focus of my group: “ML-based design”

A. Natural tension between extrapolation vs. trustworthiness. [1-4].

C
D.

1.
2. Fannjiang et al NeurlPS
3. Fannjiang et al PNAS 2C
4. Nisonoff et al arXiv 202
5. ©
6. Brookes et al PNAS 2022 (funct. pred.) g
7. Hsu et al Nat. Biotech. 2022 (function prec

8. Zhu, Brookes, et al ,bioRxiv. (opt. design)

9.

Related to cau
typically think = I' \1V > ¢s > arXiv:2306.00872

Suitable protel
Design of distr

Computer Science > Machine Learning

[Submitted on 1 Jun 2023]
Brookes et al ILLM 2019 | novelty predictable?

Clara Fannjiang, Jennifer Listgarten

Aghazadeh et al Nat. CorrmmzuzT(sparse

Busia & Listgarten, bioRxiv (log enrichmen

10. Fannjiang & Listgarten, arXiv (overview) ’ sequence space

certainty (whereas we

NLP) [4-7].
al sequences [1,2,8,9].

|

DNN

"

D+ @

DNN
landscape

Index of input sequence

WH transform of
DNN landscape |
1IN | |

Index of WH coefficient

|

¢,-norm of WH transform



Presenter Notes
Presentation Notes
Have been mostly focused on problems arising from predicting function imperfectly.

Epistemic refers to lack of knowledge -- something we could in principle know for sure -- in contrast to aleatoric "intrinsic randomness" involved in which of possible futures will actually occur. 


Analogy: can we trust “banana” design?

catalytic
efficiency




Naive design yields abstract art.

Hidden Layer 1 Hidden Layer 2

277 P ¢
*ghﬂ~m,;,_h_ -ﬁ; % % 3 .
P Lt catalytic
- fﬁ’%ﬂmﬂ% ;'1,} {,Egr Iy, 'ﬁ: .
W N efficiency
non-fo[d[ng protein 1. Brookes et al ICLM 2019 (CbAS)

2. Fannjiang et al NeurlPS 2020 (autofocus)



Pathologies of DNNs: in design, we're the adversary

input image classified as

STOP

az

SR o
*'h‘%""‘,-‘ ?

misclassified as
YIELD




Conditioning by Adaptive Sampling for Robust Design (CbAS)

U

How to handle a pathology in design? p(ylx)

Leverage prior knowledge, p(x), by
modeling:

1. Where training data lie.

2. "Protein-likeness’, e.g. stability via
biophysics, or implicitly via large pan-
proteome unsupervised models.

[Gomez-Bombarelli, ACS Cent. Sci. 2018.]

Brookes, Park & Listgarten /[CML 2019

avid Brookes




B
Augmenting Neural Networks with Priors on Functional Values

Coherent blending of function value prior information, such
as biophysical models, to Bayesian Neural Networks (BNN).

Fasy to implement, zero added cost.

y METHOD LOG-LIKELIHOOD
10 NN —8.33 £ 0.66
/\‘ 05 [ /‘ BNN —5.73 £ 0.18
Lo f S kN STACKING: BNN+NON-FUNCTIONAL PRIOR  —8.63 £ 0.33
/ < N / N STACKING: BNN+STABILITY PRIOR —8.61+0.34
- fv-BNN (NON-FUNCTIONAL PRIOR) —1.82 +0.00
fv-BNN (STABILITY PRIOR) —1.53 = 0.00

regular BNN function-value
augmented BNN

Nisonoff Wang, Listgarten, bioRxiv : unter Nisonoff



Presenter Notes
Presentation Notes
Relies on estimation of epistemic uncertainty (uncertainty that is driven to zero with Inf data)


&
The real deal: testing+developing our ideas with

wetlab collaborators

 David Schaffer (UC Berkeley; AAV for gene therapy)
* David Savage (UC Berkeley, CRISPR-Cas9 system)

* Chris Garcia (Stanford, protein-protein interactions)
e Phil Romero (U Wisconsin; enzymes for plastic degradation)

* Secure and Robust Biosystems Design Group (LL National Labs,
Columbia University, University of Maryland, University of Minnesota)



Presenter Notes
Presentation Notes
AAV: as ‘eye’ is considered as part of CNS and does not have a neutralizing antibodies problem because of the retina-blood barrier, so in theory, re-administration is possible here too with local injection. However, most clinical trials so far have not looked at re-administration yet, as most of these treatments provide long-term (at least a few years I think) of expression. If there is a need to re-administer, the transgene may be delivered with another capsid (prob need some design here too) or use immunosuppression in parallel to avoid potential problems, but I don’t think it’s fully studied yet in these trials. Most studies focus on the initial efficiency of the treatment, meaning to get as many cells transduced (infected) as possible to achieve the targeted therapeutic threshold
Phage: The alarming rise in antimicrobial resistance coupled with a lack of innovation in antibiotics has renewed interest in the development of alternative therapies to combat bacterial infections. Despite phage therapy demonstrating success in various individual cases, a comprehensive and unequivocal demonstration of the therapeutic potential of phages remains to be shown. The co-evolution of phages and their bacterial hosts resulted in several inherent limitations for the use of natural phages as therapeutics
Which phage can tackle which bacteria, and then design phages accordingly.



Engineering AAV for gene therapy delivery

The Adeno-associated virus (AAV) is a non-pathogenic
virus that shows promise for delivering gene therapies
(e.g. deliver blindness therapy to outer retina).

/ A TA o
i /) sl
y . S
Pl ;.'.";. i /A id
\ o
8 ‘J s =]
b, % )

Dvid Schaffer Bonnie Zhu David Brookes Akosua Busia
(now at Dyno) Now on job market

/hu, Brookes, Busia,..., Nowakowski, Listgarten, Schafter, bioRxiv



Presenter Notes
Presentation Notes
as ‘eye’ is considered as part of CNS and does not have a neutralizing antibodies problem because of the retina-blood barrier, so in theory, re-administration is possible here too with local injection. However, most clinical trials so far have not looked at re-administration yet, as most of these treatments provide long-term (at least a few years I think) of expression. If there is a need to re-administer, the transgene may be delivered with another capsid (prob need some design here too) or use immunosuppression in parallel to avoid potential problems, but I don’t think it’s fully studied yet in these trials. Most studies focus on the initial efficiency of the treatment, meaning to get as many cells transduced (infected) as possible to achieve the targeted therapeutic threshold


Promising AAV clinical trials

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Recent clinical trial success: ‘

Leber’s congenital amaurosis (AAV)

Safety and Efficacy of Gene Transfer
for Leber’s Congenital Amaurosi

Spinal muscular atrophy (AAV)
Hemophilia B (AAV)
Lipoprotein lipase deficiency (AAV)

e NEW ENGLAND
JOURNAL o MEDICINE

ESTABLISHED IN 1812 DECEMBER 22, 2011 VOL. 365 NO. 25

Adenovirus-Associated Virus Vector—-Mediated Gene Transfer
J.R. Mendell, S. Al- 0. Arnold, L.R. Rodino-Klapac, T.W. Prior, L. Lowes, L. Alfano, K. Berry,

K. Church, ).T. Kissel, 3~vagendran, J. L’Italien, D.M. Sproule, C. Wells, J.A. Cardenas, M.D. Heitzer, A. Kaspar, n Hemophlha B

S. Corcoran, L. Braun, S. Likhite, C. Miranda, K. Meyer, K.D. Foust, A.H.M. Burghes, and B.K. Kaspar Amit C. Nathwani, M.B., Ch.B., Ph.D., Edward G.D. Tuddenham, M.B., B.S., M.D., Savita Rangarajan, M.B., B.S.,
Cecilia Rosales, Ph.D., Jenny MclIntosh, Ph.D., David C. Linch, M.B., B.Chir., Pratima Chowdary, M.B., B.S.,
Anne Riddell, B.Sc., Arnulfo Jaquilmac Pie, B.S.N., Chris Harrington, B.S.N., James O’Beirne, M.B., B.S., M.D.,
Keith Smith, M.Sc., John Pasi, M.D., Bertil Glader, M.D., Ph.D., Pradip Rustagi, M.D., Catherine Y.C. Ng, M.S.,
Mark A. Kay, M.D., Ph.D., Junfang Zhou, M.D., Yunyu Spence, Ph.D., Christopher L. Morton, B.S., James Allay, Ph.D.,
John Coleman, M.S., Susan Sleep, Ph.D., John M. Cunningham, M.D., Deokumar Srivastava, Ph.D.,
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Ongoing challenges for AAV-based therapeutics

* |nefficient delivery to target tissues/cells.

» Non-specific delivery.

 Pre-existing immunological neutralization.
* |nefficient uptake into target cells.

First AAV project goal, “library design”:

« Obtain optimal starting “library” for all
these engineering goals.

e (e, fix the huge amount of library that ﬂRVAPTGmFCHQNKDW
gets wasted because doesn't “package”.
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AAV library design

1. Build predictive model and test (sequence—packaging fitness).
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AAV library design

2. Wetlab validate model (measure titer directly)
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AAV library design

3. Invert ML predictive model to get diversity-fitness optimality curve
argmaxyEy, [f(x)] + AH[py]
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AAV library design

4. Validate in the lab.
argmaxgEy, . [f ()] + AH[py]
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AAV library design

5. Demonstrate better downstream selection (human brain
cell infectivity), that it was not specifically designed for.
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Parting thoughts: ML + protein engineering

. Exciting times!
2. Are we close to ChatGPT4 for protein engineering? No.

3. Far less data than in text, vision—will need to be much more
clever for the answers to "emerge” (unless same functions).

4. AlphaFold? and progeny will help advance protein engineering.

5. Predicting function (generally) will remain difficult problem for a
long time.

6. Whiplash---this field is moving quickly, hard to tell what is real/
usetul.



The perpetual motion machine of Al-
generated data and the distraction of
“ChatGPT as scientist”

Jennifer Listgarten

EECS Department

University of California, Berkeley
Technical Report No. UCB/EECS-2023-239
November 30,2023

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2023/EECS-2023-239.pdf

Since ChatGPT works so well, are we on the cusp of solving science with Al? Isn’t AlphaFold2 suggestive that
the potential of LLMs in biology and the sciences more broadly is limitless? Can we use Al itself to bridge the
lack of data in the sciences in order to then train an Al? Herein we present a discussion of these topics.
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