CS 189/289

Today's lecture:

1. Administrative FAQ
2. Multivariate Gaussians (MVG)

FAQs 1

Website is up and running finally! https://eecs189.org

I'm on the waitlist or a CE student. Do I have to keep up with assignments? Yes, you have to keep up with assignments like an enrolled student.

Will I get off the waitlist/have CE enrollment approved?

The EECS department handles waitlist/enrollment, so we don't have control over that. I don't know any more. Don't reach out to course staff/profs about CE approval: these applications are being processed.

FAQs 2

Can I get added to the bCourses?

- We are not using bCourses for the semester, as everything is selfcontained within Ed, Gradescope, and the course website (eecs189.org). (Slides also posted to google folder)
Are discussions recorded/available by zoom?
- No. However, discussion sheets and solutions will be posted periodically.
What are the Ed and Gradescope codes?
- Posted on eecs189.org as well but also included info here:
- Gradescope Code: E73744
- Ed: https://edstem.org/us/join/fCBF32
- Still having difficulty, contact arvind.rajaraman@berkeley.edu (Head GSI).

FAQs 3

- Do we have alternate exam times?
- No. You must take the midterm and final in-person with the rest of the class (if you're DSP, your exam time accommodation will be honored).
- Can lecture slides be posted before lecture?
- Yes, there is now a Google Drive folder (check homepage of eecs189.org) which contains these slides for faster access.
Please check eecs189.org's syllabus first, as most students' questions so far have been answered there. If you have any other questions, please initiate contact in this order of priority.
- Public Ed post
- Private Ed post
- Email Head GSI (arvind.rajaraman@berkeley.edu)

FAQs 4

When and where are professor office hours.
-These will be held by the lecturing professor directly after the lecture for one hour.
-We are struggling to find an appropriate room, so for now, follow the professor out of the lecture hall and we can meet outside somewhere near Dwinelle.

CS 189/289

Today's lecture:

1. Administrative FAQ
2. Multivariate Gaussians (MVG),

Recall last class:
e.g. MLE for univariate Gaussian

- In simple settings, we can find the setting of the parameters that set the partial derivatives to zero in closed-form:

$$
\mu_{M L E}, \sigma_{M L E}^{2}=\underset{\mu, \sigma^{2}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p\left(x_{i} \mid \mu, \sigma^{2}\right)
$$

- Lets expand out so we can take the derivative:

Today: Multivariate Gaussian (MVG) distributions

Recall that the pdf of a univariate Gaussian (normal) distribution is:

$$
p\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \stackrel{y}{x}
$$

Today: Multivariate Gaussian (MVG) distributions

Recall that the pdf of a univariate Gaussian (normal) distribution is:

$$
p\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) \begin{aligned}
& \text { ositive } \\
& \text { sem } \\
& \text { dgfinate }
\end{aligned}
$$

The multivariate extension of this is for $x \in \mathbb{R}^{d}, u \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ and PSD.

$$
\begin{gathered}
p(x ; \mu, \Sigma)=\frac{1}{\sqrt{\mid 2 \pi \sum}}-\exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
\end{gathered}
$$

Carl Friedrich Gauss

Johann Carl Friedrich Gauss 30 April 1777
Brunswick, Principality of
Brunswick-Wolfenbüttel
23 February 1855 (aged 77)
Göttingen, Kingdom of Hanover, German
Confederation

Why a lecture on MVGs?
MVGs permeate much of classical and modern day ML:

- Classification: generative vs. discriminative (this class).
- Unsupervised models: Principle Components Analysis \& autoencoders (this class).
- Advanced topics: Gaussian Process Regression (and deep versions thereof), etc.

Why a lecture on MVGs?

- All models are wrong but some are useful!- George Box, JASA 1976.
- Ubiquitous in natural phenomena because of CLT.
- CLT: sum large \# of independent RVs, their sum tends towards a Gaussian distribution.
- e.g., complex genetic traits such as height, blood pressure, etc.
- Convenient to work with (analytically tractable).

Goals of this lecture:

1. Give you intuitive interpretation and manipulation of MVG (with technical underpinnings).
2. Teach you some of the properties of MVG that will come in handy for ML.

Multivariate Gaussian (MVG) distributions

- Consider two quantities, height and weight (of humans).
- Given the arguments of CLT with genetics, it's plausible that each of these is Gaussian distributed, so lets assume:

$$
\text { height }=X_{h} \sim N\left(\mu_{h}, \sigma_{h}^{2}\right)
$$

$$
\text { weight }=X_{w} \sim N\left(\mu_{w}, \sigma_{w}^{2}\right)
$$

joint distribution vs marginal distributions

Suppose I want the joint distribution, $p\left(\left[X_{h}=x_{h}, X_{w}=x_{w}\right]\right)$, how would we write it down? (Shorthand: $\left.p\left(\left[x_{h}, x_{w}\right]\right)\right)$.

Multivariate Gaussian (MVG) distributions

$$
p\left(\left[x_{h}, x_{w}\right]\right)=N(?)
$$

- Each point is a sample from some 2D pdf, $p\left(\left[x_{h}, x_{w}\right]\right)$.
- If we computed the mean of this distribution, $u=\left[u_{1}, \mu_{2}\right]$, it would be..?
- $u=\left[\mu_{h}, \mu_{w}\right]$
- How do we compute/write the "spread" of the points?
- Can we use $p\left(\left[x_{h}, x_{w}\right]\right)=N\left(x_{h} ; \mu_{h}, \sigma_{h}^{2}\right)^{\star} N\left(x_{w} ; \mu_{w}, \sigma_{w}^{2}\right)$?

$$
\text { height }=X_{h} \sim N\left(\mu_{h}, \sigma_{h}^{2}\right) \quad \text { weight }=X_{w} \sim N\left(\mu_{w}, \sigma_{w}^{2}\right)
$$

Multivariate Gaussian (MVG) distributions

$$
p\left(\left[x_{h}, x_{w}\right]\right)=\text { ? }
$$

If independent RVs, $p\left(\left[x_{h}, x_{w}\right]\right)=N\left(\mu_{h}, \sigma_{h}^{2}\right)^{\star} N\left(\mu_{w}, \sigma_{w}^{2}\right)$.

$$
\text { height }=X_{h} \sim N\left(\mu_{h}, \sigma_{h}^{2}\right) \quad \text { weight }=X_{w} \sim N\left(\mu_{w}, \sigma_{w}^{2}\right)
$$

Multivariate Gaussian (MVG) distributions

$$
p\left(\left[x_{h}, x_{w}\right]\right)=?
$$

- If we could rotate the coordinate system to be "axis aligned", then

$$
p\left(\left[x_{1}, x_{2}\right]\right)=N\left(x_{1} ; \mu_{1}, \sigma_{1}^{2}\right)^{\star} N\left(x_{2} ; \mu_{2}, \sigma_{2}^{2}\right) .
$$

- How do we do a rotation?
- Multiply by an appropriate orthonormal matrix, $Q:\left[\begin{array}{l}x_{1} \\ x_{z}\end{array}\right]=Q\left[\begin{array}{l}x_{k} \\ x_{w} \\ x_{1}\end{array}\right]$

$$
\text { height }=X_{h} \sim N\left(\mu_{h}, \sigma_{h}^{2}\right) \quad \text { weight }=X_{w} \sim N\left(\mu_{w}, \sigma_{w}^{2}\right)
$$

MVGs: Finding the right rotation matrix

"Baby" case: variables are independent, and each is 1D:

- $X \sim p(x)=N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim p(y)=N\left(\mu_{2}, \sigma_{2}^{2}\right)$
- Then $p([x, y])=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right] \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} \exp \left[-\frac{1}{2 \sigma_{2}^{2}}\left(y-\mu_{2}\right)^{2}\right]$

MVGs: Finding the right rotation matrix

"Baby" case: variables are independent, and each is 1D:

- $X \sim p(x)=N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim p(y)=N\left(\mu_{2}, \sigma_{2}^{2}\right)$
- Then $p([x, y])=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right] \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} \exp \left[-\frac{1}{2 \sigma_{2}^{2}}\left(y-\mu_{2}\right)^{2}\right]$
$=\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}-\frac{1}{2 \sigma_{2}^{2}}\left(y-\mu_{2}\right)^{2}\right]$
$=P(x, y)=\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}} \exp \left(-\frac{1}{2}\left\{\left[x-\mu_{1}, y-\mu_{2}\right]\left[\begin{array}{ccc}\sigma_{1}^{2} & 0 & -1 \\ 0 & \sigma_{2}^{2}\end{array}\right]^{x-\mu_{1}}\left[\begin{array}{c}x-\mu_{2}\end{array}\right]\right\}\right)$

MVGs: Finding the right rotation matrix

"Baby" case: variables are independent, and each is 1D:

- $X \sim p(x)=N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim p(y)=N\left(\mu_{2}, \sigma_{2}^{2}\right)$
- Then $p([x, y])=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right] \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} \exp \left[-\frac{1}{2 \sigma_{2}^{2}}\left(y-\mu_{2}\right)^{2}\right]$

$$
=\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}} \exp \left[\left(\frac{1}{2 \sigma_{1}^{2}}\right)\left(x-\mu_{1}\right)^{2}-\frac{1}{2 \sigma_{2}^{2}}\left(y-\mu_{2}\right)^{2}\right]
$$

Math

$$
\left.=P(x, y)=\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}} \exp \left(-\frac{1}{2}\left(\left[x-\mu_{1}, y-\mu_{1}^{2}\right]\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]^{-1}\left[x-\mu_{1}\right]\right\}\left(y-\mu_{2}\right]\right]\right)
$$

inverse:

$$
\left[\begin{array}{ll}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{1}^{2}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 / \sigma_{1}^{2} & 0 \\
0 & 1 / \sigma_{2}^{2}
\end{array}\right]
$$

$$
[x, y] \sum\left[\sum_{4}^{-1}\right] \quad \begin{aligned}
& \sum \begin{array}{l}
\sum \text { is called } t \text { t } \\
\text { covariance } \\
\text { matrix in th }
\end{array}
\end{aligned}
$$ matrix in the MV (Σ^{-1} the precision matrix)

MVGs: Finding the right rotation matrix

"Baby" case: variables are independent, and each is

- $\quad X \sim p(x)=N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim p(y)=N\left(\mu_{2}, \sigma_{2}^{2 .}\right.$ hey ${ }^{\prime} \mid$
- Then $p([x, y])=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right] \frac{\vdots}{\sqrt{2 i}}$

Math

$$
\text { inverse: }\left[\begin{array}{ll}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{1}^{2}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 / 6_{1}^{2} & 0 \\
0 & 1 / \sigma_{2}^{2}
\end{array}\right]
$$

$$
[x, y] \sum\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

 matrix in the MV (Σ^{-1} the precision matrix)

Review of expectations, variance, covariance
ExpECTATION
for discrete $\sum x P(x)$
for continuous $\int x p(x) d x$

$$
E_{(x)}[h(x, y)]=\int h(x, y) p(x) d x
$$ green clended by y for mean.

Properties of expectation
obesnt require

- Linearity $E\left(\sum_{i} \alpha_{i} x_{i}\right)=\quad \sum_{i} \alpha_{i} E\left(x_{i}\right)<$ independence
- Let $x_{1} \ldots x_{n}$ be independent randomuariables

$$
\begin{aligned}
& E\left(\prod_{i=1}^{n} x_{i}\right)=\prod_{i=1}^{n} E\left(x_{i}\right) \\
& E(x+c)=E(x)+c^{l}
\end{aligned}
$$

Review of expectations, variance, covariance
VARIANCE
Let \bar{X} be a riv. with mean (expectation) $\mu:=E[x]$
Then variance is defined as $E(x-\mu)^{2}$
Properties:

- $V_{\Delta}(x)=E\left(x^{2}\right)-\mu^{2}$
- $\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x)$
- if $x_{1}, \ldots x_{n}$ are independent and $\alpha_{1}, \ldots \alpha_{n}$ constants $\operatorname{Var}\left(\sum \alpha_{i} x_{i}\right)=\sum \alpha_{i}{ }^{2} \operatorname{Var}\left(x_{i}\right)$

Review of expectations, variance, covariance
covariance of two Ry.

$$
\begin{aligned}
& \operatorname{Cov}(x, y)=E(\underbrace{(x-E(x)}(y-E(y))=E\left(\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right) \\
& =E[X Y]-E[X] E[Y] \\
& \Rightarrow \operatorname{cov}(x, x)=\operatorname{var}(x) \text {. independent } x, y \Rightarrow \operatorname{cov}(x, y)=0
\end{aligned}
$$

Back to this example

Lets work out the baby case, variables are indepenc

- $\quad X \sim p(x)=N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim p(y)=N\left(\mu_{2}, \sigma_{2}^{2}\right.$. he $^{\prime}$
- Then $p([x, y])=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}\right] \frac{\vdots}{\sqrt{2 i}}$
$=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2} \sigma_{2}^{2}}} \exp \left[-\frac{1}{2 \sigma_{1}^{2}}\left(x-\mu_{1}\right)^{2}-\frac{}{2 \sigma_{2}^{2}}\left(y-\mu_{2}\right)^{\omega t}\right]$

The covariance matrix contains covariances!

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \sum=\left[\begin{array}{ccc}
\operatorname{cov}\left(x_{1}, x_{1}\right) & \operatorname{cov}\left(x_{1}, x_{2}\right) & \operatorname{cov}\left(x_{1}, x_{3}\right) \\
\operatorname{cov}\left(x_{2}, x_{1}\right) & \operatorname{cov}\left(x_{2}, x_{2}\right) & \operatorname{cov}\left(x_{2}, x_{3}\right) \\
\operatorname{cov}\left(x_{3}, x_{1}\right) & \operatorname{cov}\left(x_{2}, x_{3}\right) & \operatorname{cov}\left(x_{3}, x_{3}\right)
\end{array}\right]
$$

$$
\rightarrow C_{3}^{2}
$$

Symmetric. Since $\operatorname{cov}\left(x_{1}, x_{2}\right)=\operatorname{cov}\left(x_{2}, x_{1}\right)$ also positive semi definite.
In our example $\left[\begin{array}{cc}\sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2}\end{array}\right] \begin{aligned} & \text { is the cove. Matrix. } \operatorname{cov}\left(x_{1}, x_{2}\right) \text { no since } \\ & \text { We started from indesendant inaniabler } x, y\end{aligned}$

Multivariate Gaussian (MVG) distributions

Fact: If $X \in \mathbb{R}^{d}$ is distributed as a MVG, then $\forall i, j \in\{1, \ldots d\}$ $\operatorname{cov}\left(X_{i}, X_{j}\right)=0$ iff X_{i}, X_{j} are independent.

Generally (beyond MVG), weaker statement: if X_{i}, X_{j} are independent then $\operatorname{cov}\left(X_{i}, X_{j}\right)=0$.

Intuition?

From the baby case to the general case

We worked the baby case, variables are independent, and each is 1D:

$$
\begin{aligned}
& X \sim p(x)=N\left(\mu_{1}, \sigma_{1}^{2}\right) \text { and } Y \sim p(y)=N\left(\mu_{2}, \sigma_{2}^{2}\right) \text {, so that } p([x, y])=p(x) p(y) \\
& P(x, y)=\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}}} \exp \left(-\frac{1}{2}\left\{\left[x-\mu_{1}, y-\mu_{2}\right]\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right]\left[\begin{array}{c}
x-\mu_{1} \\
y-\mu_{2} 2
\end{array}\right]\right\}\right) \text { h. } 4 \text {, }
\end{aligned}
$$

How can we better understand the general case, with $\mathrm{X} \in \mathbb{R}^{d}$ and nonindependence between the components?

$$
p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

The MVG is at its core a quadratic form

MVG has 2 main terms:

1. Quadratic term, where most of the "action happens".

$$
\left.p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)\right)
$$

The MVG is at its core a quadratic form

MVG has 2 main terms:

1. Quadratic term, where most of the "action happens".
2. Normalizing constant, which ensures that the distribution integrates to 1 .

$$
\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) d x_{1} d x_{2} \cdots d x_{n}=1 .
$$

Quadratic term \Rightarrow level sets of MVG pdf are ellipses

What do these look like in high dimensions?

To deal with a 14-dimensional space, visualize a 3D space

-Geoff Hinton, "grandfather" of deep neural networks (U. Toronto).

What do these look like in high dimensions?

To deal with a 14-dimensional space, visualize a 3D space and say "fourteen" to yourself very loudly. Everyone does it.

-Geoff Hinton, "grandfather" of deep neural networks (U. Toronto).

Still, lets try to get an intuition.

$$
p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Sphering a MVG

"diagonitred"

- To "sphere" a MVG is to alter it so as make all its contour lines be spheres (also called "whitening"):
- (useful for manipulation of MVGs rełated to PCA, advanced linear regressions, etc.)

Linear Algebra: Diagonalizing a matrix

- For the MVG, the covariance matrix (and its inverse) is symmetric and positive semi-definite (PSD).
- Symmetric because covariance is symmetric $\operatorname{cov}(x, y)=\operatorname{cov}(y, x)$. - Recall a symmetric matrix $C \in \mathbb{R}^{d \times d}$ is PSD iff $u^{T} C u \geq 0$ for every $u \in \mathbb{R}^{d}$. (PD if strictly >0). It follows that all eigenvalues are ≥ 0.
- Recall eigenvalues:

$$
\begin{array}{r}
A \underset{\sim}{x}=\lambda \underset{\sim}{x} \longrightarrow \underset{\sim}{x} \text { is an eigenvector } \\
\lambda \text { is an eigenvalue } \\
\text { eigenvalues are found bey solving- } \\
\operatorname{det}(A-\lambda I)=0
\end{array}
$$

Linear Algebra: Diagonalizing a matrix

Spectral theorem:
When A is symmetric $A=A^{\top}$

$$
\begin{aligned}
& A=Q D Q^{\top} \quad \text { with real eigenvalues in } D \\
& \text { and orthonormal vectors in } Q
\end{aligned}
$$

Linear Algebra: Diagonalizing a matrix
Spectral theorem:
when A is symmetric $A=A^{\top}$
$A=Q D Q^{\top}$ with real eigenvalues in D

Next we will use this theorem to "de-rotate" (to sphere) an ellipse.

Linear Algebra: Diagonalizing a matrix

Inverses and square roots.

- If $A=Q D Q^{\top}$

Then $A^{-1}=Q D^{-1} Q^{\top}$
where $D^{-1}=\left[\begin{array}{llll}\lambda_{1}^{-1} & & & \\ & \lambda_{2} & & \\ & & \ddots \lambda_{n}^{-1}\end{array}\right]$
why?

This is nice because itthe gaussian we $\Sigma^{-1}=$ "precision Mat nix" or "Concentration Matrix"

- Define $R=Q \sqrt{D} Q^{\top}$ (symmetric)
where $\sqrt{D}=\left[\begin{array}{cccc}\sqrt{\lambda_{1}} & & 0 \\ & \sqrt{\lambda_{2}} & \\ & \ddots & \\ & & \sqrt{\lambda_{n}}\end{array}\right]$
then $\quad A=R^{\top} R=R R^{\top}$
if
symmetric
why?

$$
\begin{aligned}
R^{\top} R^{*}=\underbrace{Q \sqrt{D} \Phi^{\top} \underbrace{\phi}_{R} \sqrt{D} \varphi^{\top}}_{R^{\top}}=\Phi \sqrt{D} \cdot \sqrt{D} \Phi^{\top} & =\Phi D \varphi^{\top} \\
& =A .
\end{aligned}
$$

can be a useful factorization of A

Diagonalizing an ellipse
$[x y]\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=1$
$A=\left[\begin{array}{l}54 \\ 45\end{array}\right]$ is positive definite

1. Eigenvalues of A -

$$
\begin{aligned}
& A x=\lambda x \\
& {\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
9 \\
9
\end{array}\right] \rightarrow V_{1}=\left[\begin{array}{c}
1 \\
1
\end{array}\right] \lambda_{1}=9} \\
& {\left[\begin{array}{l}
5 \\
4
\end{array} 5\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \longrightarrow V_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \lambda_{2}=1}
\end{aligned}
$$

$$
A=Q D Q^{\top}
$$

2. Want to make this into an orthonormal φ
\rightarrow make eigenvectors normalized by dividing'

$$
\begin{array}{rlr}
Q & =\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] & \text { by } \sqrt{2} \\
\rightarrow A & =\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] &
\end{array}
$$

3. Change coordinate system aloygthe eigenvectors \Rightarrow in the new system: $9 x^{12}+1 y^{\prime 2}=1$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]}_{\varphi}\left[\begin{array}{l}
x \\
y
\end{array}\right] \Rightarrow \underbrace{x^{\prime}=\frac{x+y}{\sqrt{2}}} \begin{gathered}
y^{\prime}=\frac{x-y}{\sqrt{2}}
\end{gathered} y^{\prime}>\underbrace{\text { axis aligned! }}_{\text {(no cross terms) }}
$$

Sphering an ellipse
$[x y]\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=1$
$A=\left[\begin{array}{l}54 \\ 45\end{array}\right]$ is positive definite

1. Eigenvalues: The axes point along the eigenvectors
$A_{x}=\lambda_{x}$ the minor and major axes lengths are $1 / \sqrt{\lambda}$ and $1 / \sqrt{2} .2$. 4 dividing
$\left[\begin{array}{ll}5 & 4 \\ 4 & 5\end{array}\right][1 \Rightarrow$ So finding a coordinate system that makes the ellipse

$$
\left[\begin{array}{l}
54 \\
45
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$ axis aligned is the sane as diagonilizing A.

3. change coordinate system along the eigenvectors $\Rightarrow \Rightarrow$ in the new system: $9 x^{\prime 2}+1 y^{\prime 2}=1$

Geometric intuition: "de-sphering" a MVG

- Let $X \sim N(0, I)$.
- Let $\Sigma=Q D Q^{T}$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma=\left(Q D^{\frac{1}{2}}\right)\left(D^{\frac{1}{2}} Q^{T}\right)=A A^{T}$.
- Let $Y=A X+\mu$. Then by affine property $Y \sim N(\mu, \Sigma)$.

(1) $x_{1}, x_{2} \ldots x_{n} \sim N(0,1)$ all independent. $X \sim N(0, I)$.

$$
Y=A X+\mu_{\sim}^{\mu} \sim N\left(\mu_{\sim}, A A^{\top}\right)
$$

(2) If \sum is positive definite then if $Y \sim N(\mu, \Sigma)$ then-$A^{-1}(Y-\mu) \sim N(0,1)$.

$$
X \infty N(0, I)
$$

Geometric intuition: "de-sphering" a MVG

- Let $X \sim N(0, I)$.
- Let $\Sigma=Q D Q^{T}$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma=\left(Q D^{\frac{1}{2}}\right)\left(D^{\frac{1}{2}} Q^{T}\right)=A A^{T}$.
- Let $Y=A X+\mu$. Then by affine property $Y \sim N(\mu, \Sigma)$

Geometric intuition $\longrightarrow Q D^{1 / 2} X=A X \sim N(0, \Sigma)$

- Let $X \sim N(0, I)$.
- Let $\Sigma=Q D Q^{T}$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma=\left(Q D^{\frac{1}{2}}\right)\left(D^{\frac{1}{2}} Q^{T}\right)=A A^{T}$.
- Let $Y=A X+\mu$. Then by affine property $\mathrm{K} \sim N(\mu, \Sigma)$,

Geometric intuition

- Let $X \sim N(0, I)$.

$$
\left(\begin{array}{rl}
7 Q D^{1 / 2} X=A X & \sim N(0, \Sigma) \\
A X+M \sim N(M, \Sigma)
\end{array}\right.
$$

- Let $\Sigma=Q D Q^{T}$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma=\left(Q D^{\frac{1}{2}}\right)\left(D^{\frac{1}{2}} Q^{T}\right)=A A^{T}$.
- Let $Y=A X+\mu$. Then by affine property $\mathrm{K} \sim N(\mu, \Sigma)_{\nu}$

Geometric intuition $>Q D^{1 / 2} X=A X \sim N(0, \Sigma)$

- Can decompose any MVG in terms of a "scaling", "rotation" and " " operator with respect to the standard $N(0, I)$ form.
- Let $\Sigma=Q D Q^{\prime}$ De a covariance matrix tactorea into its eigenvectors ana diagonal matrix. Can also write it as $\Sigma=\left(Q D^{\frac{1}{2}}\right)\left(D^{\frac{1}{2}} Q^{T}\right)=A A^{T}$.
- Let $Y=A X+\mu$. Then by affine property $\mathrm{K} \sim N(\mu, \Sigma)$

Extra slides (not responsible for)

Real application: Genome-Wide Association Studies (GWAS)

Input:

- A set of people with/without a disease
- Measure a large set of genetic markers for each person (e.g., SNPs: single nucleotide polymorphism).

Desired output:

- A list of genetic markers underlying the disease.

Spurious "signal" in the genetic markers owing to racial/pedigree confounders.

$N \times N$ covariance matrix

By including these "hidden dimensions" in a model, we can correct the problem.

Nat. Genetics 2013, Nat. Methods 2012, 2011, 2014 etc.

Mixed Model Approach (GPR)

Generative model:

- sample a "latent ancestry vector"

$$
\begin{aligned}
& \text { add as covariate } \\
& p(\vec{u})=N(\overrightarrow{0}, \\
& p(\vec{y} \mid \vec{u})=N(X \beta+\eta) \\
& \left.\Rightarrow \text { uncuruoos } p(\vec{y})=\int p(\vec{y} \mid \vec{u}) p(\vec{u}) d \vec{u}\right) \\
& p(\vec{y})=N\left(X \beta, \eta^{2}+I \sigma^{2}\right)
\end{aligned}
$$

2. Exploit rank when few SNPs are used

If \mathbf{K} is computed in a particular way, and $n>$ s_{c} then computations are linear in n.

e.g., the realized relationship
matrix (RRM) [Visscher et al]

$$
\begin{aligned}
& n \text { is \# people } \\
& s_{c} \text { is \# of SNPs used to compute K }
\end{aligned}
$$

Experimental running time and memory

- EMMAX
- FaST-LMM
- FaST-LMM full
out of memory after 13K individuals
fixed variance components
re-estimate variance components

