CS 189/289

oday’s lecture:
. Administrative FAQ
2. Multivariate Gaussians (MVG).
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FAQS 1

Website is up and running finally! https://eecs189.0rg

'm on the waitlist or a CE student. Do | have to keep up with

assignments?  Yes, you have to keep up with assignments like an
enrolled student.

Will | get oftf the waitlist/have CE enrollment approved?

The EECS department handles waitlist/enrollment, so we don't
have control over that. | don’t know any more. Don't reach out to
course staff/profs about CE approval: these applications are being
processed.



FAQS 2

Can | get added to the bCourses?

« We are not using bCourses for the semester, as everything is self-
contained within Ed, Gradescope, and the course website
(eecs189.0rq). (Slides also posted to google folder)

Are discussions recorded/available by zoom?
* No. However, discussion sheets and solutions will be posted
periodically.
What are the Ed and Gradescope codes?

e Posted on eecs189.org as well but also included info here:
» Gradescope Code: E7/3744

 Ed: hitps://edstem.org/us/join/fCBF 32
« Still having difficulty, contact arvind.rajaraman@berkeley.edu (Head GSI).




FAQS 3

* Do we have alternate exam times?

* No. You must take the midterm and final in-person with the rest of the class (if
you're DSP your exam time accommaodation will be honored).

 Can lecture slides be posted before lecture?

* Yes, there is now a Google Drive folder (check homepage of eecs189.org) which
contains these slides for faster access.

Please check eecs189.org’s syllabus first, as most students’ questions so
far have been answered there. If you have any other questions, please
initiate contact in this order of priority.

* Public Ed post
* Private Ed post
* Email Head GSI (arvind.rajaraman@berkeley.edu)




FAQs 4

When and where are professor office hours.

* These will be held by the lecturing protessor directly
after the lecture for one hour.

* We are struggling to find an appropriate room, so for
now, Tollow the professor out of the lecture hall and we
can meet outside somewhere near Dwinelle.




CS 189/289

Today's lecture:

2. Multivariate Gaussians (MVG).




Recall last class: -
—
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* In simple settings, we can find the setting of the parameters that
set the partial derivatives to zero in closed-form:

UMLE> OiLE = argmaxz log p(x;lu, 0%)

u,o?
. Lets expand out so we can take the derivative: .
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Today: Multivariate Gaussian (MVG) distributions

Recall that the pdf of a univariate Gaussian (normal) distribution is:
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Today: Multivariate Gaussian (MVG) distributions

Recall that the pdf of a univariate Gaussian (normal) distribution is:
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The multivariate extension of this is for x € R%, u € R% and Z € ]RdXd and PSD.
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Carl Friedrich Gauss

o
Portrait of Gauss by Christian Albrecht Jensen
(1840)

Born

Died

Johann Carl Friedrich Gauss
30 April 1777

Brunswick, Principality of
Brunswick-Wolfenbuttel

23 February 1855 (aged 77)
Gottingen, Kingdom of
Hanover, German
Confederation



Why a lecture on MV(Gs?

MVGs permeate much of classical and modern day ML:

e Classification: generative vs. discriminative (this class).

» Unsupervised models: Principle Components Analysis &
autoencoders (this class).

» Advanced topics: Gaussian Process Regression (and deep
versions thereof), etc.




Why a lecture on MV(Gs?

 All models are wrong but some are usefull— George
Box, JASA 1976.

 Ubiguitous in natural phenomena because of CLT.

« CLT: sum large # of independent RVs, their sum tends
towards a Gaussian distribution.

*e.g., complex genetic traits such as height, blooa
pressure, etc.

» Convenient to work with (analytically tractable).



Goals of this lecture:

1. Give you intuitive interpretation and
manipulation of MVG (with technical
underpinnings).

2. Teach you some of the properties of MVG
that will come in handy for ML.

[may see MVN for "Multivariate Normal Distribution”]



Multivariate Gaussian (MVGQG) ©

istributions

» Consider two quantities, height and weight (of

NuUMans).

* Given the arguments of CLT with genetics, it's plausible that each of

these is Gaussian distributed, so lets assume:
height = X, ~ N(uy, o7)

) Heights {in) of Americar women (ages F0-32) ol
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Suppose | want the joint distribution, p([X; = xp,

Xy, = X, ]), how

would we write it down? (Shorthand: p([xy, x,, 1))



Multivariate Gaussian (MVG) distributions A_Aﬂmm

1

--------------------

height

uuuuuuuuuuuuuuuuuuuu

p([xhrxw]) =N(?)

Fach point is a sample from some 2D pdf, p([xy, xy, ]).
T we computed the mean of this distribution, u = [u4, 4], it would be..?.

u = [Up, fw]
How do we compute/write the “spread” of the points?

Can we use p([xy, xy,]) = N(xp; pn, 0f, )*N(xw; T ) ?

height = X;, ~ N(up, o7 )



Multivariate Gaussian (MVG) distributions

f independent RVs, p([x, x,,]) = N(up, 67 )*N(,uw, o2 ) .

height = X;, ~ N(up, o7 )



T we could rotate the coordinate system to be "axis aligned”, then
p([x1,2%2]) = NCeos g, 012 )*N(Xz; U, 022).

How do we do a rotation? . 0,
Multiply by an appropriate orthonormal matrix,Q: [IJ :QL(‘VE

height = X, ~ N(up, of )



MVGs: Finding the right rotation matrix

"Baby” case: variables are independent, and each is 1D:
* X ~p()=N(u,0f) andY~p(y) = N(uz, 03 )

o Thenp([x,y]) = - exp [—#(x — M1)2] \/1—69619 [—#(Y — [i2)*
t 2105 z

2
2TTO]



MVGs: Finding the right rotation matrix

"Baby” case: variables are independent, and each |s 1D:
* X ~p()=N(u,of) andY~p(y) = N(up, 03 )

* Then p([x,y])=\/aexp [——(x—ul) ]\/Eex’p[ 202 — v — ) ]

1

= 27T\/:exp[ — (X — Up)? — 707 — (V= i) ]
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MVGs: Finding the right rotation matrix

"Baby” case: variables are independent, and each is 1D:
* X ~px) = N(Ml'gl ) and Y~p(y) = N(up, 03 )

« Then p([x,y]) = exp[ (x—ul) ]\/Eexz?[ 707 — v — ) ]

=- exp[‘@(x—uaz 20— )]
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MVGs: Finding the right rotation matrix

"Baby” case: variables are independent, and each is
° X P(X) — N(‘Lll, 0-1 ) aﬂd Y’Vp(y) — N(Mz’ 2- CW

* Thenp([x,y]) = exp[ 77 X~ H1) ] \f [
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Review of expectations, variance, covariance

ExPTCHRTION
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Review of expectations, variance, covariance

VAHANCE
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Review of expectations, variance, covariance

CoVAARANCE ol Ji o BN,
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Back to this example

Lets work out the baby case, variables are indepenc
° X P(X) — N(‘Lll, 0-1 ) aﬂd Y’Vp(y) — N(Mz’ 2- CW
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he covariance matrixécpntains covariances!

Teov (x0,%)) LoV (X,Xa) Cov (%, xs)
Cov (X2, %1)  CoV (X2,X2) Cou(X2,X3)
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Multivariate Gaussian (MVG) distributions

Fact: If X € R is distributed as a MVG, then Vi, j € {1, ...d}
cov(X;, X;) = 0 iff X;, X; are independent.

Generally (beyond MVG), weaker statement: if X;, X; are
independent then cov(Xi,Xj) =0.

. Lets work out the baby case, variables are indepenc § g ——=E=s
” | 5o 2013 W
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From the baby case to the general case

We worked the baby case, variables are independent, and each is 1D:
X ~p() =N(u, 07 ) and Y~p(y) = N(uz,03), 50 that p([x, y]) = p()p(y)

Plxv) = zn-'m pr(—i‘_..i{x—y' ) ,3__)‘2] [6; :;-J E:i;‘f)

How can we better understand the general case, with X € R% and non-
independence between the components?

_ _ 1 o _
plx; p, 2) = PREDE exp (—§(J' — )" Nz - p‘))




The MVG is at its core a quadratic form

MVG has 2 main terms:
1. Quadratic term, where most of the “action happens”.

| | 1
P, ) = (Qﬂ-)?r-f"z

1/2 X




The MVG is at its core a quadratic form

MVG has 2 main terms:
1. Quadratic term, where most of the “action happens”.
2. Normalizing constant, which ensures that the distribution integrates to 1.

| | 1 | |
p(x;p, ) = X (—5(1' —pu)' SNz - ;1))
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Quadratic term=level sets of MVG pdt are ellipses

lance between x1 and x2 =-0.8

One level set (contour line) of MVG pdf comprises
the values x for which p(x) is a constant:

B =
\ 2T X A = Congtend
‘ | | | c:l\ ) 4 ’il'

Vg ) -
}{ ‘)'Cc:Jl *==*k» 3&2:»(

e.g. x € R*¥=2then 0 = ax? + bxyx, + cx5 +d

1
(27)"/2|S[1/2

p(x; p, X) =




What do these look like in high dimensions?

To deal with a 14-dimensional space, |
visualize a 3D space \

—Geoff Hinton, “grandfather” of deep
neural networks (U. Toronto).




What do these look like in high dimensions?

fo geal with a 14-dimensional space,

visualize a 3D space and say
"fourteen” to yourself very loudly.
Everyone does it.

.

—Geoff Hinton, “grandfather” of deep
neural networks (U. Toronto).




Still, lets try to get an intuition.

5 Covaniance between x1 and x2 = -0.8 . Covanance between x1 and x2 =0 5 Covaniance between x1 and x2 = 0.8
2 2 2
1 1 1 .
could look at each pair of
X X X variables x; and x;
-1 -1 -1
-2 -2 -2
3—'3 -2 -1 4] 1 2 3 3—‘3 -2 -1 4] 1 2 3 3—‘3 -2 -1 o 1 2 3
wl w1 x1

e - 1 . 1, rac1,
plx; p, 22) = PSREIRE exp (—§(tz — )" 2 (= ,u))




Cnllizad
Sphering a MVG M“‘a”\ ‘

* Jo "sphere” a MVG is to alter it so as make“all its contour lines
be spheres (also called "whitening”):
* (useful for manipulation of MVGs retated to PCA, advanced

inear regressions, etc.)

original data decorrelated data whitened data




Linear Algebra: Diagonalizing a matrix

For the MV, the covariance matrix (and its inverse) is symmetric
and positive semi-definite (PSD).

Symmetric because covariance is symmetric cov(x,y) = cov(y, x).
Recall a symmetric matrix € € R%*? is PSD iff ul Cu = 0 for every
u € R4, (PD if strictly > 0). It follows that all eigenvalues are > 0.
Recall eigenvalues:

Ax =XAX —» X isom egenyedtor

X 1S om epepnwria

'Q:‘ofmmkw are found oy soluing -
ek (A'—/\I.)::-Q



Linear Algebra: Diagonalizing a matrix

When A is _S_"]N\Me"y’k, A=N"
A= G\)DQT With rea| eigenvalues v D
cmel ortmoviomal Wetios In - Q

Spectral theorem:

g

Next we will use this theorem to “de-rotate” (to sphere) an ellipse.



Linear Algebra: Diagonalizing a matrix

Spectral theorem:

Wen A is symmedvic.  A=AT
A= G\)DQT With "fﬁl eigenvalues in D

i

A= PDP
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Next we will use this theorem to “de-rotate” (to sphere) an ellipse.



Linear Algebra: Diagonalizing a matrix

IMVerzes and square Voots
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Diagonalizing an ellipse
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Sphering an ellipse
ey} (s ] [77:4 [ B ExyssPa g

A- C ’I (s posifne dedinile \llr—%

I t-\jcvntmlues g Ma}f&s Powviy a%m mﬂﬂ“wm
Ao the mwmov and M4 oV Axes lwahns u@
[ ,fgj [ : = 8‘:’ QM‘""‘A "_‘-W'M“e SYSsteM ANk Makes Ying LS
s ;’][-,J A0S oured € M Saumse as ok'\@f)muvnﬂ AL

2, Cb\anL wordinate system along te eq MVE’""BY? = i due new System_: ax’ 2y 13 =4

] r[ J[V] = ih- 3 2 = 2 aligred ]

-

.__'d_
Vs (Vo crog terms)




Geometric intuition: “‘de-sphering” a MVG

e letX ~N(O,I).
« LetX = QDQ"be a covariance matrix factored into its eigenvectors and

1 1
diagonal matrix. Can also write it as & = (QDz)(DzQ") = AAT.
e letY = AX + u. Then by affine property Y ~ N(u, X).

SG)hM \ () X1, X2 X ~ N (0, 1) all independent .
X~ N2\ T).
Y- AX+M ~N (L, ART)
@ 1€ S0 \s posiive 0\@6\'\44'\\& fnen & \{N“(}‘,Z) nen -
A (V=) — WO,

X~ (0,5



Geometric intuition: “‘de-sphering” a MVG

Let X ~ N(O,1).
Let ¥ = QDQ"be a covariance matrix factored into its eigenvectors and

1 1
diagonal matrix. Can also write it as & = (QDz)(DzQ") = AAT.
Let Y = AX + u. Then by affine property Y ~ N(u, X)

spnervs— T, L ”é?.;)‘iéﬂ"
2= SN
< S

X~ (0,2) D’/“xw/o)m



Geometric intuition 7 QD)X= AX ~ N(DZ)

e letX ~N(O,I).
« LetX = QDQ"be a covariance matrix factored into its eigenvectors and

(QDz)(D2Q") = AAT.

diagonal matrix. Can also write it as Z

sy T Vil \ﬁ“"
= 4
o 9.
X~ (o2 D7X~NIO)D



Geometric intuition (7 QP"X= AX~ N(DZY)

e LetX ~N(O,I). AT Nfﬁl;)) '
« LetX = QDQ"be a covariance matrix factored into its eigenvectors and

(QDz)(D2QT) = AAT.

diagonal matrix. Can also write it as X

~~—
e o
;/QW >0)’L
AN (0 T)  DOX~NIO)D



Geometric intuition (7 QP"X= AX ~ N(DZ)

Can decompose any MVG in terms of a “scaling”, “rotation” and “ " operator

with respect to the standard N (0, I) form.
LET 2 = YLD * De a covariance mat(Ix ractored INto 1S elgenvectors and \

1 1
diagonal matrix. Can also write it as < (QDz)(DzQ") = AAT.




Extra slides (not responsible for)



Real application: Genome-Wide
Association Studies (GWAS)

Input:
- A set of people with/without a disease
Measure a large set of genetic markers for each

person (e.g., SNPs: s n p ).

Desired output:
« Alist of genetic markers underlying the disease.

L]
ATGTTGAATCTG 2] |
AARGTGALATET Vak b
TATTATACGAAG : v gl [ i .
—|— AAGTATTTECOTA ”- o= | ||- g :
GACCTOAMAALCC ) »* . : " : . [ ” l
CTTCATCATALC ARy 1o e L T K+ B e TR B
list of genetic markers | ii 4 H “ “ ‘h ﬂ "
- ~ - - " L - ‘:wﬂ' g = D 2 X 2R:-PPRRR

DNA from set of individuals



Spurious “signal” in the genetic markers

N X N covariance matrix Novembre et al Nature 2008

By including these "hidden dimensions” in a model, we

can correct the problem.
Nat. Genetics 2013, Nat. Methods 2012, 2011, 2014 efc.



Mixed Model Approach (GPR
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2. Exploit rank when few SNPs are used

T K is computed in a particular way, and n >
s, then computations are linear in n.

e.g., the realized relationship
matrix (RRM) [Visscher et al]

S C
=R .
AT h | X
R, | |

n is # people
S. Is # of SNPs used to compute K




Experimental running time and memory

30

sl Memory (GB)
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—8— FaST-LMM full|.
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«  EMMAX out of memory after 13K individuals
« FaST-LMM fixed variance components
FaST-LMM full re-estimate variance components



