

Today's lecture:

- 1. Administrative FAQ
- 2. Multivariate Gaussians (MVG)

Website is up and running finally! <u>https://eecs189.org</u>

I'm on the waitlist or a CE student. Do I have to keep up with assignments? Yes, you have to keep up with assignments like an enrolled student.

Will I get off the waitlist/have CE enrollment approved?

The EECS department handles waitlist/enrollment, so we don't have control over that. I don't know any more. Don't reach out to course staff/profs about CE approval: these applications are being processed.

Can I get added to the bCourses?

- We are not using bCourses for the semester, as everything is selfcontained within Ed, Gradescope, and the course website (eecs189.org). (Slides also posted to google folder)
- Are discussions recorded/available by zoom?
 - No. However, discussion sheets and solutions will be posted periodically.
- What are the Ed and Gradescope codes?
 - Posted on eecs189.org as well but also included info here:
 - Gradescope Code: E73744
 - Ed: https://edstem.org/us/join/fCBF32
 - Still having difficulty, contact arvind.rajaraman@berkeley.edu (Head GSI).

- Do we have alternate exam times?
 - No. You must take the midterm and final in-person with the rest of the class (if you're DSP, your exam time accommodation will be honored).
- Can lecture slides be posted before lecture?
 - Yes, there is now a Google Drive folder (check homepage of eecs189.org) which contains these slides for faster access.

Please check eecs189.org's syllabus first, as most students' questions so far have been answered there. If you have any other questions, please initiate contact in this order of priority.

- Public Ed post
- Private Ed post
- Email Head GSI (<u>arvind.rajaraman@berkeley.edu</u>)

When and where are professor office hours.

- These will be held by the lecturing professor directly after the lecture for one hour.
- We are struggling to find an appropriate room, so for now, follow the professor out of the lecture hall and we can meet outside somewhere near Dwinelle.

Today's lecture:

- 1. Administrative FAQ
- 2. Multivariate Gaussians (MVG)

Today: Multivariate Gaussian (MVG) distributions

Recall that the pdf of a univariate Gaussian (normal) distribution is:

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) \int_{\frac{1}{2\sigma}}^{\frac{3\sigma}{2\sigma}} \left(\frac{1}{2\sigma^2}(x-\mu)^2\right) \int_{\frac{1}{2\sigma}}^{\frac{3\sigma}{$$

Today: Multivariate Gaussian (MVG) distributions

Recall that the pdf of a univariate Gaussian (normal) distribution is:

$$p(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) \quad \int_{0}^{\frac{1}{2\sigma}} \int_{$$

The multivariate extension of this is for $x \in \mathbb{R}^d$, $u \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ and PSD.

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} + \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} + \frac{$$

https://regenerativetoday.com/univariate-and-bivariate-gaussian-distribution-clear-explanation-with-visuals/

1 ns itiza

Carl Friedrich Gauss

Portrait of Gauss by Christian Albrecht Jensen (1840)

Born	Johann Carl Friedrich Gauss 30 April 1777 Brunswick, Principality of Brunswick-Wolfenbüttel
Died	23 February 1855 (aged 77) Göttingen, Kingdom of Hanover, German Confederation

Why a lecture on MVGs?

MVGs permeate much of classical and modern day ML:

- Classification: generative vs. discriminative (this class).
- Unsupervised models: Principle Components Analysis & autoencoders (this class).
- Advanced topics: Gaussian Process Regression (and deep versions thereof), *etc*.

Why a lecture on MVGs?

- All models are wrong but some are useful!— George Box, JASA 1976.
- Ubiquitous in natural phenomena because of CLT.
- CLT: sum large # of independent RVs, their sum tends towards a Gaussian distribution.
 - *e.g.*, complex genetic traits such as height, blood pressure, *etc*.
- Convenient to work with (analytically tractable).

Goals of this lecture:

- 1. Give you intuitive interpretation and manipulation of MVG (with technical underpinnings).
- 2. Teach you some of the properties of MVG that will come in handy for ML.

[may see MVN for "Multivariate Normal Distribution"]

Multivariate Gaussian (MVG) distributions

- Consider two quantities, height and weight (of humans).
- Given the arguments of CLT with genetics, it's plausible that each of these is Gaussian distributed, so lets assume:

Suppose I want the *joint distribution*, $p([X_h = x_h, X_w = x_w])$, how would we write it down? (Shorthand: $p([x_h, x_w]))$.

weight

- Each point is a sample from some 2D pdf, $p([x_h, x_w])$.
- If we computed the mean of this distribution, $u = [u_1, \mu_2]$, it would be..?.
- $u = [\mu_h, \mu_w]$
- How do we compute/write the "spread" of the points?
- Can we use $p([x_h, x_w]) = N(x_h; \mu_h, \sigma_h^2) N(x_w; \mu_w, \sigma_w^2)$?

 $height = X_h \sim N(\mu_h, \sigma_h^2) \qquad weight = X_w \sim N(\mu_w, \sigma_w^2)$

Multivariate Gaussian (MVG) distributions

If independent RVs, $p([x_h, x_w]) = N(\mu_h, \sigma_h^2)^* N(\mu_w, \sigma_w^2)$.

height = $X_h \sim N(\mu_h, \sigma_h^2)$ weight = $X_w \sim N(\mu_w, \sigma_w^2)$

- If we could rotate the coordinate system to be "axis aligned", then $p([x_1, x_2]) = N(x_1; \mu_1, \sigma_1^2) N(x_2; \mu_2, \sigma_2^2).$
- How do we do a rotation?
- Multiply by an appropriate orthonormal matrix,Q:

$$\begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = Q \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$

 $height = X_h \sim N(\mu_h, \sigma_h^2) \qquad weight = X_w \sim N(\mu_w, \sigma_w^2)$

"Baby" case: variables are independent, and each is 1D:

- $X \sim p(x) = N(\mu_1, \sigma_1^2)$ and $Y \sim p(y) = N(\mu_2, \sigma_2^2)$
- Then $p([x, y]) = \frac{1}{\sqrt{2\pi\sigma_1^2}} exp\left[-\frac{1}{2\sigma_1^2}(x-\mu_1)^2\right] \frac{1}{\sqrt{2\pi\sigma_2^2}} exp\left[-\frac{1}{2\sigma_2^2}(y-\mu_2)^2\right]$

"Baby" case: variables are independent, and each is 1D:

- $X \sim p(x) = N(\mu_1, \sigma_1^2)$ and $Y \sim p(y) = N(\mu_2, \sigma_2^2)$
- Then $p([x, y]) = \frac{1}{\sqrt{2\pi\sigma_1^2}} exp\left[-\frac{1}{2\sigma_1^2}(x-\mu_1)^2\right] \frac{1}{\sqrt{2\pi\sigma_2^2}} exp\left[-\frac{1}{2\sigma_2^2}(y-\mu_2)^2\right]$ $= \frac{1}{2\pi\sqrt{\sigma_1^2\sigma_2^2}} exp\left[-\frac{1}{2\sigma_1^2}(x-\mu_1)^2 - \frac{1}{2\sigma_2^2}(y-\mu_2)^2\right]$ $= \mathcal{P}(x,y) = \frac{1}{2\pi\sqrt{G_1^2G_2^2}} exp\left(-\frac{1}{2}\left[x-\mu_1, y-\mu_2\right] \begin{bmatrix} G_1^2 \circ \\ O & G_2^2 \end{bmatrix} \begin{bmatrix} x-\mu_1 \\ y-\mu_2 \end{bmatrix} \right]$

"Baby" case: variables are independent, and each is 1D:

- $X \sim p(x) = N(\mu_1, \sigma_1^2)$ and $Y \sim p(y) = N(\mu_2, \sigma_2^2)$
- Then $p([x, y]) = \frac{1}{\sqrt{2\pi\sigma_1^2}} exp\left[-\frac{1}{2\sigma_1^2}(x-\mu_1)^2\right] \frac{1}{\sqrt{2\pi\sigma_2^2}} exp\left[-\frac{1}{2\sigma_2^2}(y-\mu_2)^2\right]$ $=\frac{1}{2\pi\sqrt{\sigma_{1}^{2}\sigma_{2}^{2}}}exp\left[\frac{1}{\sqrt{2\sigma_{1}^{2}}}(x-\mu_{1})^{2}-\frac{1}{2\sigma_{2}^{2}}(y-\mu_{2})^{2}\right]$ $= P(x,y) = \frac{1}{2\pi \sqrt{6_{1}^{2} 6_{2}^{2}}} \exp\left(-\frac{1}{2}\left[\left[x-\mu_{1},y-\mu_{2}\right]\left[\begin{array}{c}6,^{2}&0\\0&6_{2}\end{array}\right]\left[\left[x-\mu_{1}\right]\right]\right)$ Σ is called the Math inverse: $\begin{bmatrix} 6_1^2 & 0 \\ 0 & 6_2^2 \end{bmatrix} = \begin{bmatrix} 1/6_1^2 & 0 \\ 0 & 1/2^2 \end{bmatrix}$ Fx,y covariance matrix in the MVG (Σ^{-1} the precision matrix)

Review of expectations, variance, covariance

EXPECTATION

$$E_{x}\left[h(x,y)\right]=\int h(x,y)p(x)dx$$

.

Properties of expectation
• Linearity
$$E(\Xi \propto i \times i) = \Xi \propto i E(\times i) \ll$$
 independence
• Let $X_{1...,X_{N}}$ be independent random variables
 $E(\Pi \times i) = \Pi E(\times i)$
• $E(X+C) = E(X)+C$

Review of expectations, variance, covariance

Let X be a r.v. with mean (expectation)
$$\mu = E[X]$$

Then variance is defined as $E(X-\mu)^2$

Propeerfies: • $V(x) = E(x^2) - M^2$ • $Var(ax+b) = a^2 Var(x)$ • if $x_1, ..., x_n$ are independent and $x_1, ..., x_n$ constants $Var(\Sigma, x_i; x_i) = \Sigma x_i^2 Var(x_i)$

Review of expectations, variance, covariance

$$\frac{\text{Covariance}}{\text{Cov}(x,y)} = E\left((x-E(x)(y-E(y))) = E\left((x-y)(y-w)\right)\right)$$

$$\frac{\text{Cov}(x,y)}{\text{RNWM}} = E[xy] - E[x]E[y]$$

$$\frac{\text{RNWM}}{\text{Mean 0}} = E[xy] - E[x]E[y]$$

$$\frac{\text{CORRELATION}}{\text{CORR}(x,y)} = \frac{\text{COV}(x,y)}{\text{Var}(x)\text{Var}(y)} = \frac{\text{COV}(x,y)}{\text{Var}(x)}$$

Back to this example

The covariance matrix contains covariances!

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} cov(x_{1}, x_{1}) & cov(x_{1}, x_{2}) & cov(x_{1}, x_{3}) \\ cov(x_{2}, x_{1}) & cov(x_{2}, x_{2}) & cov(x_{2}, x_{3}) \\ cov(x_{3}, x_{1}) & cov(x_{2}, x_{3}) & cov(x_{3}, x_{3}) \end{bmatrix} = 6^{2}$$

$$symmetric. since cov(x_{1}, x_{2}) = cov(x_{2}, x_{1})$$

$$also positive semi definite.$$
In our example
$$\begin{bmatrix} 6^{2} & 07 \\ 0 & 6^{2} \end{bmatrix}$$
is the cov. Matrix. $cov(x_{1}, x_{2}) = 0$ since we started from independent inside of x.y.

Multivariate Gaussian (MVG) distributions

Fact: If $X \in \mathbb{R}^d$ is distributed as a MVG, then $\forall i, j \in \{1, ..., d\}$ $cov(X_i, X_j) = 0$ iff X_i, X_j are independent.

Generally (beyond MVG), weaker statement: if X_i, X_j are independent then $cov(X_i, X_j) = 0$.

Intuition?

Lets work out the baby case, variables are independ
•
$$X \sim p(x) = N(\mu_1, \sigma_1^2)$$
 and $Y \sim p(y) = N(\mu_2, \sigma_2^2, head for the p([x, y])) = \frac{1}{\sqrt{2\pi\sigma_1^2}} exp\left[-\frac{1}{2\sigma_1^2}(x - \mu_1)^2\right] \frac{1}{\sqrt{2\pi\sigma_1^2}} = \frac{1}{\sqrt{2\pi\sigma_1^2\sigma_2^2}} exp\left[-\frac{1}{2\sigma_1^2}(x - \mu_1)^2 - \frac{1}{2\sigma_2^2}(y - \mu_2)\right]$
= $\frac{1}{\sqrt{2\pi\sigma_1^2\sigma_2^2}} exp\left[-\frac{1}{2\sigma_1^2}(x - \mu_1)^2 - \frac{1}{2\sigma_2^2}(y - \mu_2)\right]$
= $\frac{P(x, y)}{1} = \frac{1}{2\pi\sqrt{6_1^26_2^2}} exp\left(-\frac{1}{2}\left[\left[x - \mu_1, y - \mu_2\right]\right] \left[\begin{pmatrix} 6,^2 & 0 \\ 0 & 6x^2 \end{pmatrix} \right] \left[\begin{pmatrix} x - \mu_1 \\ y - \mu_2 \end{pmatrix} \right] \right]$

From the baby case to the general case

We worked the baby case, variables are independent, and each is 1D:

 $X \sim p(x) = N(\mu_1, \sigma_1^2)$ and $Y \sim p(y) = N(\mu_2, \sigma_2^2)$, so that p([x, y]) = p(x)p(y)

$$P(x,y) = \frac{1}{2\pi \sqrt{6_{1}^{2} 6_{2}^{2}}} \exp\left(-\frac{1}{2}\left[\left[x-\mu_{1}, y-\mu_{2}\right]\left[6_{1}^{2} 0\right]\left[x-\mu_{1}\right]\left[y-\mu_{2}\right]\right]\right) \qquad \text{heym}$$

How can we better understand the general case, with $X \in \mathbb{R}^d$ and non-independence between the components?

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

The MVG is at its core a quadratic form

MVG has 2 main terms:

1. Quadratic term, where most of the "action happens".

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

The MVG is at its core a quadratic form

MVG has 2 main terms:

- 1. Quadratic term, where most of the "action happens".
- 2. Normalizing constant, which ensures that the distribution integrates to 1.

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

$$\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) dx_1 dx_2 \cdots dx_n = 1.$$

Quadratic term \Rightarrow level sets of MVG pdf are ellipses

What do these look like in high dimensions?

To deal with a 14-dimensional space, visualize a 3D space

—Geoff Hinton, "grandfather" of deep neural networks (U. Toronto).

What do these look like in high dimensions?

To deal with a 14-dimensional space, visualize a 3D space and say "fourteen" to yourself very loudly. Everyone does it.

—Geoff Hinton, "grandfather" of deep neural networks (U. Toronto).

Still, lets try to get an intuition.

could look at each pair of variables x_i and x_j

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Sphering a MVG

- To "sphere" a MVG is to alter it so as make all its contour lines be spheres (also called "whitening"):
- (useful for manipulation of MVGs related to PCA, advanced linear regressions, etc.)

https://pantelis.github.io/cs677/docs/common/lectures/optimization/whitening/

M diagonalized"

Linear Algebra: Diagonalizing a matrix

- For the MVG, the covariance matrix (and its inverse) is *symmetric* and *positive semi-definite* (PSD).
- Symmetric because covariance is symmetric cov(x, y) = cov(y, x).
- Recall a symmetric matrix $C \in \mathbb{R}^{d \times d}$ is PSD iff $u^T Cu \ge 0$ for every $u \in \mathbb{R}^d$. (PD if strictly > 0). It follows that all eigenvalues are ≥ 0 .
- Recall eigenvalues:

Linear Algebra: Diagonalizing a matrix

Spectral theorem:

When A is symmetric A=AT A=QDQT with real eigenvalues in D and orthonormal vectors in Q

Ma

Next we will use this theorem to "de-rotate" (to sphere) an ellipse.

Next we will use this theorem to "de-rotate" (to sphere) an ellipse.

Linear Algebra: Diagonalizing a matrix

Diagonalizing an ellipse ^y↑ 5×²+ 8×y+5y²=1 $[\times y] \begin{bmatrix} 5 & 4\\ 45 \end{bmatrix} \begin{bmatrix} 7\\ 4 \end{bmatrix} = 1$ $A = Q D Q^T$ A= [45] is positive definite 2. Want to make this into an orthonomial of 1. Eigenvalues of A--> make eigenvectors normalized by dividing Ax=2x $\begin{bmatrix} 5 \\ 4 \\ 5 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 9 \\ 9 \end{bmatrix} \longrightarrow \forall i \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \end{bmatrix} \begin{bmatrix} 9 \\ - \end{bmatrix}$ の部1-11 by VZ $\begin{bmatrix} 54\\ 45 \end{bmatrix} \begin{bmatrix} -1\\ -1 \end{bmatrix} = \begin{bmatrix} 1\\ -1 \end{bmatrix} \longrightarrow V_2 = \begin{bmatrix} -1\\ -1 \end{bmatrix} \lambda_2 = 1$ $- D A = \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix}$ 3. Change coordinate system along the eigenvectors- \implies in the new system: $9x'^2 + 1y'^2 = 1$ => axis aligned! (no cross terms)

Sphering an ellipse ⁹↑ 5×²+ 8×9+5y2=1 $[\times y] \begin{bmatrix} 5 & 4\\ 45 \end{bmatrix} \begin{bmatrix} 7\\ 7 \end{bmatrix} = 1$ A= [45] is positive definite The axes point along the eigenvectors 1. Eigenvalues e the minor and major axes lengths are 1/15, and 1/152. y dividing Ax=2× So finding a coordinate system that makes the ellipse This aligned is the same as diagonitizing A. [45][1 [45][-1] 3. change coordinate system along the eigenvectors \implies in the new system: $9x'^2 + 1y'^2 = 1$ $\begin{bmatrix} x' \\ y' \end{bmatrix} = \int_{\Sigma} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} x \\ Y \end{bmatrix}$ => axis aligned! y'= x-4 (no cross terms)

Geometric intuition: "de-sphering" a MVG

- Let $X \sim N(0, I)$.
- Let $\Sigma = QDQ^T$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma = (QD^{\frac{1}{2}})(D^{\frac{1}{2}}Q^T) = AA^T$.
- Let $Y = AX + \mu$. Then by affine property $Y \sim N(\mu, \Sigma)$.

Geometric intuition: "de-sphering" a MVG

- Let $X \sim N(0, I)$.
- Let $\Sigma = QDQ^T$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma = (QD^{\frac{1}{2}})(D^{\frac{1}{2}}Q^T) = AA^T$.
- Let $Y = AX + \mu$. Then by affine property $Y \sim N(\mu, \Sigma)$

Geometric intuition $\mathbb{P}QD^{1/2}X = AX \sim N(\partial_{J}\Sigma)$

- Let $X \sim N(0, I)$.
- Let $\Sigma = QDQ^T$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma = (QD^{\frac{1}{2}})(D^{\frac{1}{2}}Q^T) = AA^T$.
- Let $Y = AX + \mu$. Then by affine property $Y \sim N(\mu, \Sigma) =$

Geometric intuition • Let $X \sim N(0, I)$. • Let $\Sigma = QDQ^T$ be a covariance matrix factored into its eigenvectors and

- diagonal matrix. Can also write it as $\Sigma = (QD^{\frac{1}{2}})(D^{\frac{1}{2}}Q^{T}) = AA^{T}$.
- Let $Y = AX + \mu$. Then by affine property $Y \sim N(\mu, \Sigma) =$

Geometric intuition $PQD^{1/2}X = AX \sim N(D,\Sigma)$

- Can decompose any MVG in terms of a "scaling", "rotation" and "shift" operator with respect to the standard *N*(0,*I*) form.
- Let $\Sigma = QDQ^{T}$ be a covariance matrix factored into its eigenvectors and diagonal matrix. Can also write it as $\Sigma = (QD^{\frac{1}{2}})(D^{\frac{1}{2}}Q^{T}) = AA^{T}$.
- Let $Y = AX + \mu$. Then by affine property $Y \sim N(\mu, \Sigma)$

Extra slides (not responsible for)

Real application: Genome-Wide Association Studies (GWAS)

Input:

- A set of people with/without a disease
- Measure a large set of genetic markers for each person (*e.g.*, SNPs: <u>single nucleotide polymorphism</u>).

Desired output:

• A list of genetic markers underlying the disease.

Spurious "signal" in the genetic markers owing to racial/pedigree confounders.

By including these "hidden dimensions" in a model, we can correct the problem.

http://guardianlv.com/2014/06/dna-sequencing-on-the-spot-saved-life/ Nat. Genetics 2013, Nat. Methods 2012, 2011, 2014 etc.

Mixed Model Approach (GPR)

Generative model:

- sample a "latent ancestry vector" ۲
- add as covariate

"amount of confounding genetic signal" $p(\vec{u}) = N(\vec{0}, \mathbf{N})$ $p(\vec{y}|\vec{u}) = N(X\beta + \eta\vec{u}, I\sigma^2)$

 $\implies \text{LIKELIHOOD } p(\vec{y}) = \int p(\vec{y}|\vec{u})p(\vec{u})d\vec{u}$ $p(\vec{y}) = N(X\beta, \eta^2 + I\sigma^2)$

2. Exploit rank when few SNPs are used

If **K** is computed in a particular way, and $n > s_c$ then computations are linear in n.

e.g., the realized relationship matrix (RRM) [Visscher et al]

n is # people *s_c* is # of SNPs used to compute K

Experimental running time and memory

• EMMAX

.

- FaST-LMM
- FaST-LMM full

out of memory after 13K individuals fixed variance components re-estimate variance components