
CS 189/289
Today’s lecture: 

Linear regression (MLE + conditional Gaussians)



Regression
• Supervised learning: data pairs ௜ ௜ , where, ௜ may be 

discrete and/or continuous.
• Regression: label, ௜ , is a real-valued, e.g., ௜ .
• Formally, want , the conditional pdf.
• “Point” prediction is then ௒ .



• Covid infection rates from zip code and vaccination rate, etc.
• How much a particular protein will bind to a drug target. 
• A person’s blood pressure from their genetics.
• Tracking - object location in video at the next time-step. 
• Housing prices, crime rates, stock prices, etc.
• Earliest regression: Legendre in 1805, and Gauss in 1809, both estimating 

orbits of bodies about the sun.

Regression examples



• Sir Francis Galton (1822-1911) “regression to the mean”.
History of the term “Regression”

“It appeared from these 
experiments that the 
offspring did not tend to 
resemble their parents in 
size, but always to be more 
mediocre than they – to be 
smaller than the parents, if 
the parents were large; to 
be larger than the parents, 
if the parents were small.”



Possible Regression Tactics (to estimate )
•Our data are drawn from some distribution, .
•What are possible strategies to estimate ?
1. Estimate (e.g. MVG for RVs ), and then use fitted 

model to compute ௣ሺ௬,௫|ఏ෡ሻ
௣ሺ௫|ఏ෡ሻ

௣ሺ௬,௫|ఏ෡ሻ

׬ ௣ ௗ௬೤

.
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2. Consider the inputs to be fixed, and model only the output as a 
RV. That is, directly model the conditional . 

“generative”, vs. “discriminative”



Linear Regression
• Takes the discriminative approach.
• Predictions are a linear function of the parameters:

௒
்

଴, for ௗ.
• ଴ is called the “offset”/“bias”/”intercept”.
• Instead of a bias, we can make an extra feature that is always .
•Now use ᇱ and ் .



How useful can a linear model be?!
Which of these curves can be modelled by linear regression? 

௒
்

଴, for ௗ

https://statisticsbyjim.com/regression/curve‐fitting‐linear‐nonlinear‐regression/



How useful can a linear model be?!

https://statisticsbyjim.com/regression/curve‐fitting‐linear‐nonlinear‐regression/

For full generality, ஽ need the cross-terms and bias 
terms, e.g., quadratic ଵ ଶ ଵ

ଶ
ଶ
ଶ

ଵ ଶ

் ் ଶ ் ଶ ଷ

𝑤, 𝑥 ∈ ℝଵ



• Denote basis expansion of the (raw) input features:  
ௗ ௞

.

For , polynomial expansions of order :
• For a quadratic expansion, ଶ , and .
• For a cubic expansion, ଶ ଷ , and .

• For a linear/identity basis expansion, , and .

Basis expansion of raw input space

Polynomial expansion of order 2 (i.e. quadratic)



Basis expansion of raw input space
Basis functions are pre-determined, so just a notational change:

௒
் , for  ௞ ௗ

In this lecture, for simplicity of notation, we will assume that this 
expansion has already been done, and just write ் .



Many basis possible functions!



Specific form of linear regression
• So far we said linear regression is ௒

் .
• But what do we use for ? 
• Standard linear regression uses a Gaussian ் ଶ .
• Equivalent to ் , with ଶ .
• Which is equivalent to ் ଶ .
• Alternate forms give “heavier tails” to the distribution of the “residual”.



Aside: heavy-tailed distribution
•More of the mass lies further from the center of mass.
• Heavy-tailed noise models outliers better than a Gaussian.

https://www.semanticscholar.org/paper/The‐Normal‐Distribution‐.‐.‐.‐or‐Another‐Brandenburger‐Weston/b0a227e36d655c0dceaeb774225e0b4fb6cda8ed/figure/2

் ଶ
் ଶ



Gaussian linear regression, 
For every value , the target variable, , takes on a 
Gaussian distribution with the same variance, ଶ:

𝐸 𝑌 ൌ 𝑤்𝑥

𝑁ሺ𝑦;  𝑤்𝑥ଷ,𝜎ଶሻ

𝑁ሺ𝑦;  𝑤்𝑥ଶ,𝜎ଶሻ

𝑁ሺ𝑦;  𝑤்𝑥ଵ,𝜎ଶሻ



“Training” a Gaussian linear regression model
How will we fit the regression model, ் ଶ ?
MLE: ெ௅ா ெ௅ா ெ௅ா
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If we assume ଶ is known…
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“least squares” loss function!

் ଶ



“Training” a Gaussian linear regression model

୑୐୉ ௪ ௜
்

௜
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௜ୀଵ
Lets re-write this loss in “vectorized” form:
First, define:
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“Training” a Gaussian linear regression model
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Lets re-write this loss in “vectorized” form:
First, define:

Then, we can re-write the loss as 

௪
்

௪ ଶ
ଶ



“Training” a Gaussian linear regression model
So want to minimize 

் ( ௡ ௡ൈௗ ௗൈଵ)
் ்

் ் ் ் ் ்
் ் ் ் ்

To minimize, we want to set డℒ
డ௪

.
This is most easily achieved by using the rules of vector calculus, so lets do a 
quick refresher.

் ଶ



Refresher on vector calculus
Some “rules” for taking gradients with respect to vectors.
• e.g., for vectors ௗൈଵ, so that ்

்

௝

ଵ ଵ ଶ ଶ ௗ ௗ

௝
௝

Thus,
்

ଵ ଵ ଶ ଶ ௗ ௗ ௗൈଵ (not true for 𝑎𝑏் which 
is a matrix, be careful!)

்

Useful cheat sheet: https://cs.nyu.edu/~roweis/notes/matrixid.pdf



Refresher on vector calculus
For vector ௗൈଵ, and matrix ௗൈௗ

்
்

Thus, if is symmetric such that ் then

்

(similar to the scalar version: డሺ௔௫
మሻ

డ௫
)
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“Training” a Gaussian linear regression model
• We still need to check if the critical point,                      

் ିଵ ் is minimum of the squared error loss.
• Recall ௪

் ்

• So Hessian matrix ( ௪
ଶ ) is ் . When is ் PD?

• When the features are independent (when it has full rank).
• ଶ from MLE as well is just the mean squared residual, 

ଶ ଵ
ே ௜

் ଶ
௜ .



Regression in 1950s
Electromechanical desk "calculators" were used, and it could take up 
to 24 hours to receive the result from one regression.



Geometric view of linear regression

https://www.analyticsvidhya.com/blog/2021/06/25‐questions‐to‐test‐your‐skills‐on‐linear‐regression‐
algorithm/

• We’re trying to predict all our training data labels correctly, 
such that ௜

்
௜ for all .

• In vector form, this means we’re looking for 

Generally  not possible because 
of noise; or incorrect model 
(e.g. all features).



Geometric view of linear regression, 
• So lets think about the error vector ( ௡ൈଵ).
• A “good” setting of minimizes the length of .
• The length is minimized when lies to column space of .
• Thus we seek such that ் ்

• Thus ் ் .
• Thus ் ் (same as from MLE/least squares)!
• Thus ் ିଵ ் , as before. 𝑦 ∈ ℝே



Using basis expansions instead of 
• ୨ ௝ ?
• Just define with ୘

୨ instead of ௝ because is fixed ahead 
of time, so its like someone just gave us different raw inputs .

Polynomial expansion of order 2 (i.e. quadratic)



What can go wrong in linear regression
When can we invert ் ௗൈௗ (for features)?         ( ேൈௗ)
• Consider the decomposition we learned last class: 
• ் ் for diagonal containing eigenvalues, and orthonormal . 
• Then we had that ் ିଵ ିଵ ். So if ் has any zero eigenvalues 

we cannot invert it (there are equally good solutions then).
• (Could use Moore-Penrose pseudo inverse.)
• This degeneracy occurs when the features in , for the given data ௝ are 

linearly dependent.
• e.g., when (then ் , but needs to be , i.e. “full rank” to 

avoid zero eigenvalues).
• What about when ?



What can go wrong in linear regression
As we add higher and higher order polynomials, a few things happen:
1. # features,  gets bigger and bigger.
2. For can perfectly fit any data (i.e., polynomials are a complete 

basis).
3. Even when we don’t perfectly fit the training data, we are still in 

danger of overfitting (worse prediction on test set). Our goal is not 
to fit a line through the training data exactly, it is to do well on 
unseen test cases!

https://towardsdatascience.com/polynomial‐regression‐bbe8b9d97491



What can go wrong in linear regression
Two main categories of fixes:
1. Remove features until the problem is well behaved.
2. Leave the features as they are, but add constraints to the 

system to “tighten it up” (aka “regularization”).

1) Is called “feature selection”, e.g. “forward selection”, “backward 
selection”, etc.

(Moore-Penrose inverse is not a general fix for ML models, only 
works for linear regression.)



A thought experiment 
Consider:
• Use MLE on data, ௜ ௜ to get 

௜ ఏ using linear 
regression.
• Assume an abundance of data 

(millions of data points), and only 100 
parameters.
• Suppose get accuracy $1000 of sale 

price when applying to held out part 
of our data.
• Can we assume this model will get 

$1000 on any test set that may come 
in the future?

Actual vs. predicted sale price of house



Causation vs correlation
Actual vs. predicted sale price of house

WSJ NOV. 2021 : “The company 
expects to record losses of more 
than $500 million from home-
flipping by the end of this year and 
is laying off a quarter of its staff.”


