CS 189/289

Today's lecture:

Linear regression (MLE + conditional Gaussians)



Regression

 Supervised learning: data pairs D = {(x;, y;)}, where, x; may be
discrete and/or continuous.

* Regression. label, y;, is a real-valued, e.g., y; € R.
» Formally, want the conditional pdf.

* "Point” prediction is th&%: Ey/[p(Y|X = x)].
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Regression examples

» Covid infection rates from zip code and vaccination rate, etc.
« How much a particular protein will bind to a drug target.

* A person’s blood pressure from their genetics.

* Tracking - object location in video at the next time-step.

» Housing prices, crime rates, stock prices, etc.

* Earliest regression: Legendre in 1805, and Gauss in 1809, both estimating
orbits of bodies about the sun.
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History of the term “Regression”
* Sir Francis Galton (1822-1911) “regression to the mean”.

"It appeared from these
experiments that the
offspring did not tend to
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Size, but always to be more
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Possible Regression Tactics (to estimate p(y|x))

» Qur data are drawn from some distribution, (X,Y) ~ p(x,y).

* What are possible strategies to estimate p(y|x)?

1. Estimate p(x, y|8) (e.g. MVG for RVs X,Y), and then use fitted
model to compute p(ylx,§) = B2XD — _ pohx9)
pute p(y]x,8) == 005 f, »(y,x|0)ay
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Possible Regression Tactics (to estimate p(y|x))

» Qur data are drawn from some distribution, (X;, Y;) ~ p(x,y).

* What are possible strategies to estimate p(y|x)?

1. Estimate p(x, y|8) (e.g. MVG for RVs X,Y), and then use fitted
model to compute p(ylx,§) = B2XD — _ pohx9)
pute p(y]x,8) == 005 f, »(y,x|0)ay

2. Consider the inputs to be fixed, and model only the output as a
RV. That is, directly model the conditional p(y|x, 8).

A
y

‘generative”, vs. "discriminative”




Linear Regression

* Takes the discriminative approach.
» Predictions are a linear function of the parameters:

9y = Ey[p(y|x)] = wx + w,, for w,x € R
* Wy Is called the "offset”/"bias”/"intercept”.
* Instead of a bias, we can make an extra feature that is always 1.
*Now use x' = [x,1] and § = w'x'".



How useful can a linear model be?!

Which of these curves can be modelled by linear regression?
¥ = Ey[p(lx)] = w'x + w,, for w,x € R
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How useful can a linear model be?! w,x € R’

9 =wTlx 9 =wT[x, x?] y=w'[x,x2 x7]
Linear Quadratic Cubic
.’/,: . .." ® [ ]
X

For full generality, x € RP need the cross-terms and bias
terms, e.g., quadratic [1, xy, x5, X%, x5, %1% .



Basis expansion of raw input space

X € R =[x, %3] = [1, %1, x5, X%, X7, x5 ] € R¥=°
Polynomial expansion of order 2 (i.e. quadratic)
» Denote basis expansion of the (raw) input features:
d(x): R4 - R¥.

For d = 1, polynomial expansions of order k = 2, 3:
* For a quadratic expansion, ®(x) = [1,x,x%], and k = 2.
* For a cubic expansion, ®(x) = [1,x,x%,x3], and k = 3.

* For alinear/identity basis expansion, ®(x) = x, and k = d.



Basis expansion of raw input space

Basis functions are pre-determined, so just a notational change:
y = Ey[p(ylx)] = w' @ (x), forw € R*, x € R”

In this lecture, for simplicity of notation, we will assume that this
expansion has already been done, and just write § = wlx.



Many basis possible functions!
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Specific form of linear regression

» So far we said linear regression is ¥ = Ey[p(y|x)] = E[p(y]|x)] = wlx.
« But what do we use for p(y|x)?

» Standard linear regression uses a Gaussian p(y|x) = N(y|w'x, 2).
 Equivalentto Y = wlx + €, with e~N (0, 0%).

« Which is equivalentto ¥ — w'x = e~N(0, 0%).

* Alternate forms give "heavier tails” to the distribution of the “residual”.
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Aside: heavy-tailed distribution

* More of the mass lies further from the center of mass.
» Heavy-tailed noise models outliers better than a Gaussian.

High peak

Slim shoulders

Large tails \

H

Normal
Distribution

Heavy-Tailed
Distribution

(Cauchy)

Y —wlx =e~N(0,0%)
Y —wlx = e~Cauchy(0,0?)



Gaussian linear regression, p(y|x) = N(y|w'x, o%)

For every value X = x, the target variable, Y, takes on a
Gaussian distribution with the same variance,
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“Training” a Gaussian linear regression model

How will we fit the regression model, p(y|x) = N(y|lw'x, 02)?
MLE: Oye = Whig, Oge) = arg max logp(D = {(x;, yi)i=1}16)

(w,0%)

= arg max Y./-, log p(y;|x;, 6)
(w,02)

= arg max y.r,log N(y;|lw'x;, %)
(w,02)

1 1
= arg max .~ log (W) — = ui=1 (v - wlx;)?

(w,02)
_ 1 N v T )2
= argmaxn log (7=2) 707 2i=1(Vi = W x;)

f we assume g2 is known...



“Training” a Gaussian linear regression model

f we assume a2 is known...

1 1
2 _ R E — wlx)?
(WmiE, Opre) = arg(mcaz%c)n 109( 27‘[0‘2) . i —w'x;)

.. then estimating w above is the same as

= arg min X1 (y; — w'x;)?

= arg Trvlvl'n Dim1 (i — 3/’\1)2

"least squares” loss function!

p(ylx) = N(ylw'x,0?%)



“Training” a Gaussian linear regression model

n
wy g = arg min Y (y; — wlx;)?
MLE 5 Il Yi i
i=1

| ets re-write this loss in “vectorized” form:
First define:




“Training” a Gaussian linear regression model

n
wy g = arg min Y (y; — wlx;)?
MLE 5 Il Yi i
i=1

| ets re-write this loss in “vectorized” form:
First define:




“Training” a Gaussian linear regression model

n
arg minZ(yi — wlx;)?
w
i=1

| ets re-write this loss in “vectorized” form:
First define:

Then, we can re-write the loss as \ A *Q(Jjel
arg min (y — Aw)T (y — Aw) \
w

- . 2 .
= argmin ||y — Awll, i



“Training” a Gaussian linear regression model

S0 want to minimize

L= (y—Aw) (y — Aw) (y € R", A € R"¢, w € R**1)
=" =AW - Aw) A
=yly —wlAly —yTAw + wl AT Aw
=yly —2wlATy + wlT AT Aw

L oL
To minimize, we want to set P 0.

This is most easily achieved by using the rules of vector calculus, so lets do a
quick refresher.

p(ylx) = N(ylw'x,0°)



Refresher on vector calculus

Some “rules” for taking gradients with respect to vectors.
e e.g., for vectors a, b € R**!, so that a’h € R,

d(a"b) 0(aiby +azby +-aghg)

aa] aa] J
Thus,
d(a"b) _ d(aib1 + azby + - agby) _ } e RixL (not true for ab® which
oa oa =bE is a matrix, be careful!)
B d(b'a)
~ Oa

Useful cheat sheet: https://cs.nyu.edu/~roweis/notes/matrixid.pdf



Refresher on vector calculus

For vector x € R?*1 and matrix & € R4xd

dxTYx
dx

= +XNx

Thus, if £ is symmetric such that £ = X7 then

0xTTx
dx
(similar to the scalar version:

= 22X

d(ax?)
0x

= 2ax)



“Training” a Gaussian linear regression mode

~T
X, \
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50 want to minimize

L= (y—Aw)" (y — Aw)
=" =AW (y — Aw)
=yly —wlAly —yTAw + wlAT Aw
=yly —2wlATy + wl AT Aw

(y € R™", A € R™4 w e R4*1)

L oL
To minimize, we want to set P 0.



“Training” a Gaussian linear regression model

S0 want to minimize

L= (y—Aw)'(y — Aw)
=" =AW - Aw)
= yTy — WTATy —yTAw + wlAT Aw
=yly —2wlATy + wl AT Aw

(y € R™", A € R™4 w e R4*1)

oL
To minimize, we want to set — = 0.

WL =

) = [-20y+20]

G’f/wd/ = - -—g\i-iTA LLJ
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So want to minimize TM"AT*A T

L= (y—Aw)T(y — Aw) /\T/
ATh-L

=" = (Aw)") ([ — Aw)
=yly —wlAly —yTAw + wT AT Aw
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“Training” a Gaussian linear regression

« We still need to check if the critical point,
w = (ATA)~1ATy is minimum of the squared error loss.

e Recall 7, L = —2A4Ty + 2AT Aw
* So Hessian matrix (V2L) is 2ATA. When is ATA PD?
« When the features are independent (when it has full rank).

* 0% from MLE as well is just the mean squared residual,
2 _ 1 T2
o —NZi(YL wix)“.

"AT%‘*‘ATAU\J =0

Vaf"—‘ W _ T 5 AT A
W C%PA);, - [—ZA y-FZAAw] ATP\\O-"P\T%




Regression in 1950s

Electromechanical desk "calculators" were used, and it could take up
to 24 hours to receive the result from one regression.
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Geometric view of linear regression

« We're trying to predict all our training data labels correctly,

such that y; = wlx; for alli € [1...n].
* In vector form, this means we're looking for

j
\x,
A,

il o T

3,1
e ) L

Generally not possible because
of noise; or incorrect mode]
(e.q. all teatures).
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Geometric view of linear regression, y = Aw

e So lets think about the error vector (e =y — 9 = y — Aw, € R™1),

e A
The length is minimized when e lies L to column space of A
Thus we seek w such that ATe = 0 = AT (y — Aw).

Thus ATy — ATAw = 0. ]
Thus ATy = AT Aw (same as from MLE/least squares)!

‘good” setting of w minimizes the length of e.
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Using basis expansions instead of x;

{i) = (0P
» Just define A with @' (x;) instead of x; because ®(x) is fixed ahead
of time, so its like someone just gave us different raw inputs x.

x = ®xq,x5] = [1, %, %5, x1%5, %7, x5] € R
Polynomial expansion of order 2 (i.e. quadratic)



What can go wrong in linear regression

When can we invert ATA € R (for d features)? (A € RN*4)
 Consider the decomposition we learned last class:

« ATA =% = QDQ" for diagonal D containing eigenvalues, and orthonormal Q.

 Then we had that (ATA)~1 = QD~1Q". So if AT A has any zero eigenvalues
we cannot invert it (there are oo equally good solutions w then).

e (Could use Moore-Penrose pseudo inverse.)

» This degeneracy occurs when the features in 4, for the given data {x;} are
inearly dependent.

* e.g., when d > n (then rank (AT A) < n, but needs to be D, i.e. "full rank” to
avoid zero eigenvalues).

* What about when d = n”




What can go wrong in linear regression

As we add higher and higher order polynomials, a few things happen:
1.

2.

# features, d gets bigger and bigger.

0AsIs).

Fven when we don't perfectly fit the training data, we are still in
danger of overfitting (worse prediction on test set). Our goa

to fit a line through the trair
unseen test cases!
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What can go wrong in linear regression

Two main categories of fixes:
1. Remove features until the problem is well behaved.

2. Leave the features as they are, but add constraints to the
system to “tighten it up” (aka “reqgularization”).

1) Is called "feature selection”, e.qg. "forward selection”, “backward
selection”, etc.



A thought experiment

Consider:

. Use MLE on data, D = {le,yl} to get
p@ (qu)(X)) USIﬂg Nnear 600000
regressmn -

* Assume an abundance of data
(millions of data points), and only 100 o000

parameters.

* Suppose get accuracy +$1000 of sale
price when applying to held out part i
Of Our data 100000

« Can we assume this model will get

Actual vs. predicted sale price of house

SalePrice

300000

100000 200000 300000 400000 500000 600000

+$1000 on any test set that may come et

Fig. 4 Ridge Prediction for Training Data.

in the future?



Causation vs correlation

Breakingviews Actual vs. predicted sale price of house
Zillow's failed house .

flipping

Reuters 400000

SalePrice

WSJ NOV. 2021 : “The company
expects to record losses of more 200000
than $500 million from home-

flipping by the end of this year and
is laying off a quarter of its staff.” 0000 20000 0000 4000 000 E00000

RidgePred

Fig. 4 Ridge Prediction for Training Data.



