CS 189/289

Today's lecture:

Linear regression part |l



Reloading last lecture

Gaussian linear regression, p(y|x) = N(y|w'x, c%)

y * Ouie = Wy, of715) = argmax logp(D|6)
. A (W:O- )

V= ExlpOylx)] = wix « L, = (y—Aw)T(y — Aw), set aa—fv =0
« ATy =ATAw (A € RV*9)

1
* WMmLE = T}’, OjaLe = NZi()’i —w'x)?

Cn(e{u\({

« Not invertible if columns (features) in 4 are
; | ' inearly dependent.

0 ) z2 z3 z « Automatically happens when d > N, in
which case, y = Aw exactly.

N(y; wlxs,0%)

« When not invertible, there are co many equally good solutions for wy; .
« (Called underdetermined linear regression.



Intuition of why oo # of wy, g solutions

* Suppose we have 2 linearly dependent features in the training data such
that ax; = x,.

* Suppose we found one MLE solution, w.
aining data point, ¥ = xTw.

zero error, is there one

Wy + W (W + W + f — B)xg forany B. that intuitively might be
= (W +5) + (W )X5tor any B. generally be better?

= (wy + ,B)xlA+ (Wpa =~ B~ + f)x; + (Wya — ﬁ)ixz
= [x1 x2] AWl th |
(Wya — B)/a




Intuition for choosing one specific w.

» Of the oo solutions for wy; g, choose the one with the least norm, |lwuyells.
Why might this be a good idea?

« Hint 1. smaller norm tends to have smaller individual values.
 Hint 2: don't expect co-linearity of features with test data.

» Consider prediction, § = wlx. How much does the prediction change
when we perturb, x' = x + §, for different norm w?

« With smaller coefficients the model is less sensitive to noise.
« What about in non-degenerate linear regression (AT A is invertible)?
* Yes! For many problems (and models), small param norm is a good idea.

* This is one e.q. of reqularization: in effect, reduce # free parameters, while
keeping the same set of parameters!



Recall how MLE can go wrong?

MLE yields a “point estimate” of our parameter

« When we perform MLE, we get just one single estimate of
the parameter, 6, rather than a distribution over it which
captures uncertainty.

* |n Bayesian statistics, we obtain a (posterior) distribution
over 8. We will touch more on this in a few lectures.
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L2 regularized linear regression

To shrink w to be smaller than the MLE solution, we add a “penalty”
term to the loss function:

L= -AW)"(y—Aw) + Alwl,"
wy, = argmin (y — Aw)"(y — Aw) + Al|wl,"

Also called “Ridge” regression, or L2 linear regression.
Related to Bayesian modeling (next).



The Bayesian modelling approach ¢ i /f\

* Bayesians put a prior distribution on the parameters, p(0).
* Then they seek to compute the posterior distribution, p(8|D).
* Then, predictive distribution is given by

p(y]x) = fg p(ylx, 0)p(81D)d6 = Eg[p(ylx, )]

* Procedurally, this is done using Bayes' rule:
»(01D) = p(D[6)p(6)
p(D)

 Difficult in practice! p(D) = fe p(D,0)do = fe p(D|8)p(60)do
« We will be lazy, instead being pseudo Bayesians, yielding L2 regression:
O1azy = argmgaxp(H|D) Maximum A Posteriort (MAP) estimation.



MAP: the lazy Bayesian (Maximum A Posteriori )

 Still use a prior over parameters, p(6).
* Finds point estimate of the parameter that maximizes the posterior.

* Opmap = argmgxp(@ D)

_ p(D|0)p(0)
= argmax —— "

= argmaxp(D|6)p(0)

S/

p(D) = fg p(D,6)d6 = fe p(D|8)p(6)d6



A prior for small weights yields L2 regression!

« Zero-mean prior, p(w) = N(w; 0, Al).

« Bayesian posterior, p(w|D) = p(DLV(VD)f(W) s then “nice” in

that everything is Gaussian (can work it out using MVGs).
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MAP for linear regression w Gaussian prior
Wyap = argmaxlogp(D|w) p(w) = argmvzlelogp(mw) + logN (w; 0, Al

= argmale-v: log N(y;|lw'x;,0%) + log N(w|0, )

T 1 (W;—0)*
—argm1n+ (y AT (y — Aw) — Y% log e |~

= argmm (y AT (y — Aw) + 3L

l

= argmin _— (y Aw)' (y — AW)"‘Zd i

= argmln (y Aw) ' (y — Aw) + —

= argmin (y — AwW)T (y — Aw) + 20° —
w

2A

= argmin(y — Aw)" (y — Aw) + V'||w]|,°
w

2
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Obtaining the MAP/L2 solution

Wy = argmm (y —Aw) ' (y — Aw) + /1||W||2

2

= argmln (y —Aw) (y — Aw) + Aw'Tw

Take partial derivative and set to zero:

VyLyap = —ZATy + 24T Aw + 2w

> 0=—-ATy + ATAw + Alw

- Ay = (ATA + ADw

> (ATA+ 2D ATy = w A=OOOT

Sow,, = (A"A+A)"tA"y. AN'=®D Q

fA >0, we can invert (ATA4 + AI). Where D = | »a

5 ot



Aside, why is this called “Ridge” regression?

When some features are linearly dependent (can't invert ATA), we
have co many equally good solutions that form a ridge.
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Fffect of value of A

Lyap = v — AW (y — Aw) + A|w|,°

# of non-zero features »  Practically, how should we set A?

- * (Can we treat it as a parameter in
the loss, and minimize wrt it?

2 —swimmers
By |

temp, - * No: cannot use MLE!

O - —s{eek:prce : : —

' ' * Need independent data, a
validation set on which to
evaluate the loss.
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Train/validation/test split

Validation set from

the training data

Split 1

All Data
Training data Test data
Fold 1 ‘ Fold2 || Fold3 || Fold4 || Fold5
Fold 1 \ Fold 2 \ Fold3 | Fold4 | Fold5

1. Find value of hyperparam that

IS best on the

2. Asses performance on the

test data.

How to assess? Compute the log
likelihood of the validation/train

data (so also estimate a2).



K-fold cross-validation

All Data
Training data Test data
Validation set from
the training data\A Fold1 || Fold2 || Fold3 || Fold4 || Folds
Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 1 F|nd Value Of hyperparam that 1S
split2 | Fold1 || Fold2 || Fold3 | Folda | Folds best across al
| > 2. Asses performance on the test
Split3 | Foldl1  Fold2 || Fold3 @ Fold4 @ Fold5 data.
Split4 | Fold 1 Fold 2 Fold 3 Fold4 | Fold5
Split5 | Fold 1 Fold 2 Fold 3 Fold4 | Fold5




L,-penalized linear regression, aka Lasso
+ wy, =argmin (y — Aw)" (y = Aw) + Alwll;

« Why does the L;norm penalty tends to induce sparse w?
e Equivalent to MLE with constraint ||w||; < constanzt

L-r |fof]

* "Pointy” constraint surface // ) L
IS jutting out along the -
axes. )

’ A®
* In many cases, the L; norm § /// /
constraint will cause the ///
unconstrained solution Q. seesen = —
intersect the constraint at a
corner. B

e The corners are where
some coefficients are 0,
which is a sparse solution
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L,-penalized linear regression, aka Lasso
wy, = argmin (y — Aw)" (y = 4w) + Allwll,

Why does the L;norm penalty tends to induce sparse w?
Equivalent to MLE with constraint ||w]|; < const(mzt

Ltl]fxf]
i=1

"Pointy” constraint surface / /- N /

IS jutting out along the
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In many cases, the L; norm d ///“ / g // /
/
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intersect the constraint at a

corner. B, B,
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The corners are where
some coefficients are 0, \.

which is a sparse solutmmlﬂ.]|+ pyst
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Ridge vs Lasso: shrinkage vs sparsity
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MAP interpretation for Lasso/L,-penalizec
inear regression?

» L, regression arose from a N (0, AI) prior. ..
* |s there a prior corresponding to L7

« Technically, the Laplace prior,
p(w) = exp(=A'[|wll1).




Combine L; and L, penalties?

Yes, “elastic net regression”.
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?pcrsify Compromise...
inducing Two parameters ...

L1 Norm L1 + L2 Norm

Issues with LASSO:

e Whend >> N, will
select no more than N
features.

I highly correlated
features, tends to
ignore all but one.




