
CS 189/289
Today’s lecture: 

Linear regression part II



Reloading last lecture
Gaussian linear regression, ் ଶ

• 𝜃ெ௅ா ൌ 𝑤ெ௅ா ,𝜎ெ௅ாଶ ൌ  arg max
௪,ఙమ

log𝑝 𝐷 𝜃

• ℒ௪ ൌ  𝑦 െ 𝐴𝑤 ் 𝑦 െ 𝐴𝑤 ,  set డℒ
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ൌ 0
• 𝐴்𝑦 ൌ 𝐴்𝐴𝑤 (𝐴 ∈ ℝேൈௗ)
• 𝑤ெ௅ா ൌ 𝐴்𝐴 ିଵ𝐴்𝑦, 𝜎ெ௅ாଶ ൌ ଵ

ே
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• Not invertible if columns (features) in 𝐴 are 
linearly dependent.

• Automatically happens when 𝑑 ൐ 𝑁, in 
which case, 𝑦 ൌ 𝐴𝑤 exactly.

• When not invertible, there are ∞ many equally good solutions for 𝑤ெ௅ா .
• Called underdetermined linear regression.



Intuition of why # of solutions
• Suppose we have 2 linearly dependent features in the training data such 

that ଵ ଶ

• Suppose we found one MLE solution, . 
• Then for any training data point, ் .
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Of all the ெ௅ா with 
zero error, is there one 
that intuitively might be
generally be better?



Intuition for choosing one specific .
• Of the solutions for ெ௅ா , choose the one with the least norm, ெ௅ா ଶ. 

Why might this be a good idea?
• Hint 1: smaller norm tends to have smaller individual values.
• Hint 2: don’t expect co-linearity of features with test data.
• Consider prediction, ் . How much does the prediction change 

when we perturb, ᇱ , for different norm ?
• With smaller coefficients the model is less sensitive to noise.
• What about in non-degenerate linear regression ( ் is invertible)?
• Yes! For many problems (and models), small param norm is a good idea. 
• This is one e.g. of regularization: in effect, reduce # free parameters, while 

keeping the same set of parameters!



Recall how MLE can go wrong?

non‐robust 𝜃ெ௅ா



L2 regularized linear regression 
To shrink to be smaller than the MLE solution, we add a “penalty” 
term to the loss function:
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Also called “Ridge” regression, or L2 linear regression.
Related to Bayesian modeling (next).



The Bayesian modelling approach
• Bayesians put a prior distribution on the parameters, .
• Then they seek to compute the posterior distribution, .
• Then, predictive distribution is given by

ఏ
ఏ

• Procedurally, this is done using Bayes’ rule:

• Difficult in practice! ఏ ఏ
• We will be lazy, instead being pseudo Bayesians, yielding L2 regression:
• ௟௔௭௬ ఏ

Maximum A Posteriori (MAP) estimation.



• Still use a prior over parameters, .
• Finds point estimate of the parameter that maximizes the posterior.
• ெ஺௉ ఏ

• alskdj
ఏ

௣ ௣ሺఏሻ
௣ሺ஽ሻ

• alskdj
ఏ

MAP: the lazy Bayesian (Maximum A Posteriori )

ఏ ఏ



A prior for small weights yields L2 regression!
• Zero-mean prior, ).

• Bayesian posterior, ௣ ௣ሺ௪ሻ
௣ሺ஽ሻ is then “nice” in 

that everything is Gaussian (can work it out using MVGs).
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MAP for linear regression w Gaussian prior
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Equivalence between 
MAP w Gaussian prior 
and L2 regression!



Obtaining the MAP/L2 solution
௅మ ௪

்
ଶ
ଶ

ெ஺௉ ௪
் ்

Take partial derivative and set to zero:
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If we can invert ்



Aside, why is this called “Ridge” regression?
When some features are linearly dependent (can’t invert ் ), we 
have many equally good solutions that form a ridge.
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𝑤

Effect of value of 

https://www.r‐bloggers.com/2020/06/understanding‐lasso‐and‐ridge‐regression/

• Practically, how should we set 
• Can we treat it as a parameter in 

the loss, and minimize wrt it?
• No: cannot use MLE!
• Need independent data, a 

validation set on which to 
evaluate the loss.

ℒெ஺௉ ൌ 𝑦 െ 𝐴𝑤 ் 𝑦 െ 𝐴𝑤 ൅ 𝜆 𝑤 ଶ
ଶ

log 𝜆

# of non‐zero features



Train/validation/test split

https://scikit‐learn.org/stable/modules/cross_validation.html

Validation set from 
the training data

1. Find value of hyperparam that 
is best on the validation set.

2. Asses performance on the 
test data.

How to assess? Compute the log 
likelihood of the validation/train 
data (so also estimate 𝜎ଶ෢ ). 



K-fold cross-validation

https://scikit‐learn.org/stable/modules/cross_validation.html

Validation set from 
the training data

1. Find value of hyperparam that is 
best across all validation sets.

2. Asses performance on the test 
data.



-penalized linear regression, aka Lasso
• 𝑤௅భ ൌ argmin

௪
 𝑦 െ 𝐴𝑤 ் 𝑦 െ 𝐴𝑤 ൅ 𝜆 𝑤 ଵ

• Why does the 𝐿ଵnorm penalty tends to induce sparse 𝑤?
• Equivalent to MLE with constraint 𝑤 ଵ ൏ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

https://towardsdatascience.com/ridge‐and‐lasso‐regression‐a‐complete‐guide‐with‐python‐scikit‐learn‐e20e34bcbf0b

• “Pointy” constraint surface 
is jutting out along the 
axes.

• In many cases, the 𝐿ଵ norm 
constraint will cause the 
unconstrained solution to 
intersect the constraint at a 
corner.

• The corners are where 
some coefficients are 0, 
which is a sparse solution..
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• “Pointy” constraint surface 
is jutting out along the 
axes.

• In many cases, the 𝐿ଵ norm 
constraint will cause the 
unconstrained solution to 
intersect the constraint at a 
corner.

• The corners are where 
some coefficients are 0, 
which is a sparse solution..



𝑤

Ridge vs Lasso: shrinkage vs sparsity

https://www.r‐bloggers.com/2020/06/understanding‐lasso‐and‐ridge‐regression/

𝑤

log 𝜆 log 𝜆

# of non‐zero features



MAP interpretation for Lasso/ -penalized 
linear regression?
• ଶ regression arose from a prior.
• Is there a prior corresponding to ଵ?
• Technically, the Laplace prior,               

ଵ .

https://www.researchgate.net/figure/Comparison‐of‐Gaussian‐and‐Laplace‐distributions_fig3_237843019



Combine and penalties?
Yes, “elastic net regression”.

https://www.researchgate.net/figure/Comparison‐of‐Gaussian‐and‐Laplace‐distributions_fig3_237843019

Issues with LASSO:
• When , will 

select no more than 
features.

• If highly correlated 
features, tends to 
ignore all but one.


