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Pre-midterm topics

Review Slides

https://docs.google.com/presentation/d/1_nD_mpmuAdCQ6No9hxfNB38DoQiIYCMAmlrDM3cmUQU/edit?pli=1#slide=id.g28907a3c0c2_1_60


Clustering



K-means clustering

● Assign points to clusters by minimizing distance to centroids

1. Compute partition by choosing closest centroid
2. Compute centers by averaging over partition
3. Continue until centers do not change



K-means example



K-means example



K-means example



K-means example



Practice Question

Fall 2023 Midterm, 1.11



Soft k-means

● Probabilistic cluster assignment using softmax of distances



Mixture of Gaussians

● What if we probabilistically model each cluster as a (non-spherical) Gaussian
● Likelihood for each point is 

● Learn the parameters 



Practice Question



Practice Question



Kleinberg impossibility theorem

1. Scale-invariance: stretching the data should yield the same clustering
2. Consistency: stretching the space between clusters yields the same 

clustering
3. Richness: clustering should be able to produce any arbitrary partition

No clustering method can satisfy all three properties!



Model Evaluation



Classifier Decision Outcomes

● Possible binary classification results:
○ False positive (FP): predicted +1, truth -1
○ False negative (FN): predicted -1, truth +1
○ True positive (TP): predicted +1, truth +1
○ True negative (TN): predicted -1, truth -1



ROC Curves

● Axes:
○ x-axis: FP rate (1-specificity)
○ y-axis: TP rate (sensitivity)

● Area under the curve (AUROC or 
AUC for short)

○ Larger area = better model
○ Probabilistic meaning?



Practice Question

Match binary classifiers for each set of distributions to their ROC curves



Solution

Further distributions allow for a better model



Nearest Neighbors



k-NN Algorithm



k-NN Algorithm

How do we choose k?



Properties of Nearest Neighbors

Pros

● No training required
● Learns complex, nonlinear 

functions

Cons

● High storage cost
● Slow at inference
● Curse of dimensionality: worse in 

higher dimensional data 



Practice Question

Fall 2022 Final, 1.28



Solution

              1-NN                                  15-NN                               Logistic Regression



Decision Trees



Decision Trees

● At each node, split by a single feature
● Traverse down tree until you hit a leaf node, which is the output



Learning Decision Trees

● Greedy algorithm:
○ Start with empty tree
○ For each node:

■ If stopping condition reached:
● Leaf label = average of data at that node

■ Else:
● Split by next best attribute
● Recurse to child nodes

● Next best attribute
○ Commonly: feature and split that maximizes Information Gain



Entropy

● Entropy of a distribution: expected “surprise”

● Surprise: 



Entropy

● Ex: entropy of a coin flip



Conditional Entropy and Information Gain

● Conditional Entropy: Expected entropy given random variable

● Information Gain



Practice Questions

Q: Could this be a decision boundary created from a decision tree?



Solution

Q: Could this be a decision boundary created from a decision tree?

A: No, because decision trees create axis-aligned boundaries. Each node will only 
split on one feature



Ensembling



Bagging and Random Forests

● Decision trees can easily overfit. How 
can we reduce variance?

● Bagging (Bootstrap AGGregation)
○ Train M models, each with n’ (usually n’=n) 

samples, sampled with replacement
○ Average M predictions to get bagged 

prediction
● Random Forests

○ Same as bagging, except at each split, 
choose only a random subset p’ (usually 
p’=sqrt(p)) of features to split on



Boosting

● For bagging and random forests, we average the results from each model 

● However we can also consider using a weighted average

● Boosting algorithm: 
○ Train next model conditioned on all previous models and their weights
○ Reweight models to minimize loss
○ Repeat

● Intuition behind boosting: reweighting of training points to emphasize those 
not currently correctly classified



Practice Question



Solution



Bias-Variance



Bias-variance tradeoff

● Model error can be decomposed into three components

● Bias: measure of average difference between model 
output and ground truth over all possible training sets

● Variance: variance of model output over all possible 
training sets

● Irreducible error: error in model that cannot be 
controlled or eliminated



Bias-variance tradeoff



Practice Question

Spring 2023 Final, Q1(p)



Solution

Since we are averaging over models, bias stays the same, but variance decreases



Hidden Markov Models



Markov Models



Markov Models



Hidden Markov Models



Hidden Markov Models



HMMs: Problems

1. Likelihood: 
a. Given a specified HMM (transition probs, emission probs), compute the likelihood of an 

observation sequence O.
2. Decoding

a. Given an HMM, find the best sequences of hidden states.
i. Viterbi Algorithm
ii. A worked out example: https://www.cis.upenn.edu/~cis2620/notes/Example-Viterbi-DNA.pdf

3. Learning
a. Learn HMM parameters (transition and emission probs) from the observation sequence O. 

https://www.cis.upenn.edu/~cis2620/notes/Example-Viterbi-DNA.pdf


Viterbi Pseudocode
● T1 stores prob of most likely 

path so far ending in state i.
● T2 stores the most recent 

observation in this path.
● We populate these matrices, 

computing a distribution over 
states at each timestep.

● Finally, we find the most 
likely path by working 
backwards from the final 
state.



Things to understand

● In what sense is this optimal and can you prove that it’s optimal? 
○ Computes the most likely path.

● Why do we only need to store the most recent states x_{j-1}? 
○ The Markov Property

● Why do we go backwards to find the path?
○ Because T1 stores the probability of the most likely path ending in state i.



Probabilistic Graphical Models



Probabilistic Graphical Models

● A graph where each node 
represents some random 
variable and edges 
represent dependence 
relationships

● DAGs help us achieve 
tractability through 
conditional independence



PGMs: Problems

1. Factorization and Probability Calculations
a. Factoring the joint density based on the links in the graph and answering questions about 

conditional independence (d-separation) and conditional probabilities
2. State estimation 

a. Same as HMMs
3. Reformulating HMMs as PGMs

a. Turn an HMM into a DAG



Practice Problem

Given that the grass is wet 
(G), what is the probability 
that it rained (R)? 



Solution



Solution

Let R be the event that it rained, D be the event that the grass is dry, and S be the 
event that the sprinkler went off. 

P(R, D, S) = P(R)P(D|R, S)P(S|R)

P(R | D) = P(D | R)P(R) / P(D)

P(D | R) = P(D| R, S)P(S|R)P(R) + P(D | R, ~S)P(~S)P(R) = 



Practice Problems

- Notes from cs188: 
https://inst.eecs.berkeley.edu/~cs188/fa23/assets/notes/cs188-fa23-note13.p
df

https://inst.eecs.berkeley.edu/~cs188/fa23/assets/notes/cs188-fa23-note13.pdf
https://inst.eecs.berkeley.edu/~cs188/fa23/assets/notes/cs188-fa23-note13.pdf


Markov Decision Processes and RL



Markov Decision Process



Markov Decision Process

● Characterized by a state space S, policy π (and actions A), rewards R, and 
transition dynamics 

● MDPs satisfy the Markov property, ie conditioning on all history is equivalent 
to conditioning on just the previous state.

● We seek to learn policies that maximize the sum of discounted rewards, or 
return. By optimizing our policy subject to the uncertainty in the environment. 



Definitions

Return:

State Value function:

Action-value function:

Expectation is taken over our policy



The Bellman Equation

Value function as the expectation of the q function over the policy:

Q function as the expectation of next-step value over transition dynamics

The Bellman Equation: a recursive definition of the value function



Policy Iteration
1. Initialize value function and policy randomly
2. Policy evaluation: estimate the value function associated with the current 

policy using the Bellman equations (fixed point strategy).
3. Policy improvement: improve the current policy by leveraging the value 

function.
4. Go back to step 2 unless converged.



Value Iteration

1. Initialize value function
2. Update value function
3. Repeat until convergence



Value Iteration

1. Initialize value function
2. Update value function
3. Repeat until convergence

Once the algorithm has converged; how can we know which actions to take?



Example



Example Transition Dynamics

Entries of table specify the distribution of next states: [full, low, depleted] and 
reward

State / Action Conserve Explore

Full Energy [1, 0, 0]: 1 [.5, .5, 0]: 2

Low Energy [.5, .5, 0]: 1 [0, 0, 1]: -10

Depleted [0, 0, 1]: 0 [0, 0, 1]: 0



Policy Iteration

State / Action Conserve Explore

Full Energy [1, 0, 0]: 1 [.5, .5, 0]: 2

Low Energy [.5, .5, 0]: 1 [0, 0, 1]: -10

Depleted [0, 0, 1]: 0 [0, 0, 1]: 0



Policy Iteration



Value Iteration

State / Action Conserve Explore

Full Energy [1, 0, 0]: 1 [.5, .5, 0]: 2

Low Energy [.5, .5, 0]: 1 [0, 0, 1]: -10

Depleted [0, 0, 1]: 0 [0, 0, 1]: 0



Value Iteration



Robotics/Language/Vision



Graph Neural Networks



Graph Neural Networks

● A graph is defined on a set of nodes V with edges E. 
● The primary mechanism in GNNs is message passing

AGGREGATE

Message 
function

COMBINE



Flavors of Message Passing



Practice Question

1. How many parameters do we have in a GNN with the following update 
function?

 

 

2. What about a CNN with kernel size k x k and m input channels and n output 
channels? 



Solution

1. 2dk
2. k2mn 

Note that neither answer depends on |V|. 



Tasks



Geometric Learning: In/Equivariances

● In Graphs neighbors have no order, so aggregation functions must be 
permutation invariant. 

○ Mean the arguments could be permutated, but the result should be the same ie f(PA) = f(A) for 
a permutation matrix P.

○ This is a general property of GNNs.
● We can also induce translational in/equivariance

○ Think of translational equivariance in convolutional layers and approximate invariance induced 
by pooling operations.

● Other kinds of invariance
○ Rotational, flipping, perspective shift. 
○ A general technique to induce approximate invariance is data augmentation



Geometric Learning: In/Equivariances

● In graphs, neighbors have no order, so aggregation functions must be 
permutation invariant. 

○ Mean the arguments could be permuted, but the result should be the same.
○ That is, f(PA) = f(A) for a permutation matrix P. 

● Making the aggregation function permutation invariant results in the graph 
neural network being permutation equivariant. 

○ Means that permutations of the arguments results in the same permutation of the outputs.
○ That is, f(PA) = Pf(A) for a permutation matrix P. 



Practice Question

Which of the following are permutation-invariant aggregation functions?

1.  
2.  
3.  
4.



Practice Question: Solution

Which of the following are permutation-invariant aggregation functions?

1.  
2.  
3.  
4.

4 is the only permutation invariant function



Translational Equivariance

● Useful for pixel and 
node-level tasks

● Ex: semantic 
segmentation or 
node classification



Rotational Invariance

● Useful for graph and 
image-level tasks

● Ex: molecule classification or 
image classification

Cat

Cat



Practice Question

In the following scenarios, would we want invariance or equivariance with respect 
to rotation?

1. Estimating the pose (x, y, z, orientation) of a chair in a scene.
2. Classifying an image into [cat, dog].
3. Predicting if a crystal structure would be stable given a molecular 

representation.
4. Predicting whether each pixel in an image belongs to a certain class.



Practice Question

In the following scenarios, would we want invariance or equivariance with respect 
to rotation?

1. Estimating the pose (x, y, z, orientation) of a chair in a scene.
a. Equivariance: if the chair moves, we’d want to reflect this in the output

2. Classifying an image into [cat, dog].
a. Invariance: a rotated cat is still a cat

3. Predicting if a crystal structure would be stable given a molecular 
representation.
a. Invariance: if a molecule is stable, it should be stable when viewed from a different orientation

4. Predicting whether each pixel in an image is a pixel of a cat.
a. Equivariance: if a cat in the image is rotation, the prediction of the pixels corresponding to 

that cat should too



Langevin MCMC



Score-based generative models

Class of generative models that learn an approximation to the score

This choice is particularly convenient to generate new samples, using Langevin 
dynamics:



Strategies to learn score-based generative models

1. Maximum likelihood: 

2. Score matching:

What are the limitations of these approaches?



Strategies to learn score-based generative models

1. Maximum likelihood: 

2. Score matching:

What are the limitations of these approaches?

3. Denoising approaches. ⇒ see discussion 11 for more information.



Two related challenges for practical sample generation

1. Sampling from multimodal distributions.

2. Generating realistic samples of high-dimensional data: starting points for 
MCMC Langevin may be OOD, and Langevin may fail to get back to 
high-density areas if the score is poorly fit outside high-density areas.

Solutions?



Kernels



High-level strategy

Motivation:  want to train and run a model on a high-dimensional set of features, 
without blowing up computational complexity

3-step process:

1. Project your features to a higher dimensional space                   
2. Rewrite all training and inference steps using only inner products between 

transformed features
3. Come up with a kernel function k that computes these inner products between 

high-dimensional vectors using the raw features



How to figure out the appropriate kernel function?

Suppose that             . We want to transform x so that it contains all monomials 
with degree ≤ 3. 

Roughly how big is this transformed vector to the right?



How to figure out the appropriate kernel function? (cont.)



Exam Tips

● Final is cumulative. Take time to review MT1 content too.
● Scope:

○ Lectures 1-27 (no special topics)
○ Homeworks 1-7
○ Discussions 0-12

● Make sure you are comfortable with probability theory, linear algebra, and 
matrix calculus.

○ Homework 1 is good for reviewing these concepts!
● Exam is Tuesday 12/17, 8-11am

○ Early exam, get a good night’s sleep!!
● Good luck!



Q&A


