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Multivariate Gaussians

e \We say a random vector follows the multivariate Gaussian distribution, iff
o Each coordinate is marginally and conditionally Gaussian.

Y
(= zi~N AND z;|z;~N é\' :
o It follows the PDF of a multivariate Gaussian distribution -
@ It is a linear transformation of a multivariate gaussian. Bl
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Select the best description.
O X and Y appear to be both marginally and jointly Gaussian.
O X and Y appear to be marginally Gaussian but not jointly Gaussian.

O X and Y appear to be jointly Gaussian but not marginally Gaussian.



Solution:

(b) X and Y appear to be marginally Gaussian but not jointly Gaussian

Why? Recall that multivariate Gaussians must be conditionally gaussian. If | give
you the value of X, you can immediately tell me the sign of Y. This means
coordinates random variables cannot be conditionally Gaussian because there is
an area with zero density.



Maximum Likelihood Estimation (MLE)

e Given some data X and an idea of what distribution the data came from
(Gaussian, Poisson, etc), MLE identifies the parameters of that distribution
that maximize the probability of observing the data X

e E.g.if{z1,72,...,2,} are sampled from IID from a dist X ~ N(y, o), solve
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e [(0;x) = pa(x) is the likelihood function

e Two tricks to getting through these problems: p  '5 Fo
o |ID: turns a joint probability into a product of individual probabilities

o Log-likelihood: applying log to the likelihood function does not shift the optimal parameters (log
is strictly increasing function), but can simplify math necessary (exponents = multiplication,

products = sums) L«C@J \55 = e ) = PLH@) = P(M =)

~H—2T \ire

taev‘ Cone ’PTC.«\'-M Ma\ ﬂO*‘\*‘L% r\:ak‘il)



Maximum Likelihood Estimation (MLE)

E.g.: goal is to determine the “best” parameters mu and sigma for the blue data:
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https://stackoverflow.com/questions/55353366/gaussian-data-fit-varying-depending-on-position-of-x-data



/\— TS Ai\kf_\g

\, —A

Example: PO - O s Beretse
We observe the following data points from a uniform distribution U[a, b]:
0,4,-1,5,8,3,4.5

What is the MLE of b?
Is the MLE of b unbiased? Recall the definition of bias:

bias(; 0) = Eg[0 — 0]
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Maximum Likelihood Estimation (MLE)

Previous slide models just data
points x. How to model y as a
function of x?

For every x, let the distribution of y
have different parameters. Use MLE
to find the best parameters to
explain y given the observed x.

1 ) 3 X4 X5 5136

https://suriyadeepan.github.io/2017-01-22-mle-linear-regression/



MLE for Linear Regression

Two equivalent ways of looking at this (“Gaussia_linear model”):
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To find the best weights, we maximize the likelihood function:

e note that we break up the joint probability into a product of probs. since samples IID
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Regularization in Linear Regression

Recall MLE estimate for linear regression: (X"™X)"'XTy = w*

e This assumes the data are distributed normally, but nothing is assumed about
the distribution of w (what w are we more likely to see)

e MLE applied to data for the linear regression model.

e The resultis the OLS estimate!!!



Maximum a posteriori estimation (MAP)

e Alternative to MLE that incorporates additional pre-existing knowledge on how
the data are distributed (namely, what the parameters of the distribution likely
are).

e Mathematically: reformulate objective function to maximize posterior
probability:

I o
likelihood! oo =T d=



MLE vs. MAP
MLE MA?

e Maximize p(datajmodel) vs. maximize p(model|data).

e MAP is explicit about what the prior is, but that comes with the burden of
identifying a prior.

e Both include the likelihood function.

e Bayesian analysis in general requires normalizing by p(data), though this is
avoided in MAP because p(data) does not vary with the parameters that are
being maximized over.
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If we do MAP for linear regression with a Gaussian prior, we get out ordinary least
squares plus an L2 regularization term:

arg max log p(y|w, X)p(w) = argmax Z log N(z} w,0?) + log N(O,;'_QI)
i=1

arg min ||y — Xwl[3 + Aljwl];

Other regularization terms fall out if you use a different prior (e.g. Laplace prior =>

L1 regularization). N , wi R0 (O &3 /L
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Example: Find the MAP prior

You have an interesting guess that the I3-norm gives you a useful prior for linear
regression, so you want to minimize

Xw — l/||§ +@ﬁ”“'”g

With the 13 norm cubed is defined as  aI'g ll}ii'll

w3 = (Z ||>
i

Find a corresponding (unnormalized) prior =(w) such that the minimization problem is
equivalent to the MAP problem of the Gaussian linear model with prior 7 (w)
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Generative vs Discriminative Classification

e Generative: models the joint p(x, y) then chooses the y that maximizes

p(y | x).
e Maximizing p(y | x) is equivalent to maximizing p(x | y)p(y)

o p(y) = sample proportions of individual labels

e3>
o p(x]y)is usually what we model (ex. Gaussian) QC/%V
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Logistic regression

e DISCRIMINATIVE
e Uses the sigmoid function (from lecture 7 slides):




Logistic regression: optimization

Minimize the following cost function (s = sigma, taken from Prof. Shewchuk’s lecture notes)
- Sfafwot&

Find w that minimizes

J = Z L(s(X; - w),yi) = (}’i In s(X; - w) + (1 —yi)In(1 — s(X; - W)))-
i=1

No closed form solution! So we do gradient descent.
Recall the derivative of the sigmoid function (good for your cheatsheet)
') d 1 e’
kY — — —
¥ dyl+e” (1+e77)?
= | s(y) (1= s(y)




Gradient Descent

Works for convex
functions!

The gradient descent method follows the simple algorithmic procedure:
1. Choose zp € R% and set k = 0
2. Choose t, > 0 and set 11 =z — txVf(zr) and k =k + 1,

3. Repeat 2 until converged.

Works in practice for
non-convex functions
involving neural
networks!




Neural networks

e Repeated applications of linear mapping W® (potentially plus bias b') followed by non-linearity g*
S 2 3 O D ST — L (OT pre+1)
x;@ﬂ) = (D) = (3 O ) D)7

_ g(S(ﬂ—H)T) - g(x(E)TW(K—I—l))

Lecture 9: Backprop and Gradient Descent 2



Backpropagation

e Efficient recursive algorithm to compute Vw(l) L, S vW(L) L
e Basecase: 51)_ 0L _ () (D)) OL | Inductive step: 5,56) - g(e)’(sl(ﬁ)) Z Wig_e+1)5§e+1)
NG RPRE -
e Partial derivatives wrt weights: % =z 53(”” (All these operations are efficiently vectorizable)
oW
ij

Lecture 9: Backprop and Gradient Descent 2



Backpropagation Practice

(e) Define the cost function
1
() = WO (W®x +b) - yIi, (1)

where W) € R4 W® ¢ R4 and ® : RY — R? is some nonlinear transformation. Compute
ot _ot ot and at

the partial derivatives -, -7, =75, =



Solution (see Discussion 4)

Solution: First, we write out the intermediate variable for our convenience.

Remember that the superscripts represents the index rather than the power operators. We have
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The easy trick to solve the derivatives with respect to (each element of) a matrix is to “guess”
the ordering of the expression so that the dimensions match up on both sides. More formally,
we could express it as follows:

ot ox®  ae
x® WD ~ 9x0

o ot ot
X = Tr(w(-)x(z)) = Tr(x(z)(m(')) = x(Z)m @



Feed Forward Neural Nets (also called MLPs)

e Use a linear function to transform inputs before activation

X1

X2
%— % 0 Hidden Layer Neural Network
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2D Convolution Convolve one learned "filter”, W with the input

to get convolution output {v;;}:

vij

For each position, i, J:
1. Element-wise product of W with image
patch centered on i,j (e.g. 3 X 3).
2. Sum up the results to get one v;;.

W called filter/template/kernel

# A SE NSV



Convolutional Neural Networks (CNNs)

We will actually use multiple feature maps, {Wj x4
"Depth” of output “volume” is K:

4

y

p—

Convnet

Filter

One
Feature
Map

<

All Feature Maps

>

K\ = almi

Non-linearity to get hidden
node in a hidden layer in CNN



Convolutional Neural Networks (CNNs)

e Convolutions are translationally equivariant
o Translate input = translate output by same amount (same function
applied)
o Reduces number of params via weight sharing
o Uses observation that many useful image features are local
e Pooling layers are commonly used to downsample image spatial dimensions
o We flatten or pool the final output into a one dimensional vector, pass it
through one or more linear layers, and then (for classification) get our
final classification vector.



Residual Connections and ResNet

Very simple high level idea: z() = ¢ (2(-1) + z(-1), rather than z) = U(Z(l_l))
Add a “skip connection” or “residual connection” to CNN

Allowed for training much deeper, more performant models

The loss “landscape” of neural networks with residual connections looks nicer

64

Li et al, NIPS ’18 Li et al, NIPS '18
He et al, 2015



CNN Hyperparameters

Ot size = Input size — Kernel.size + 2 x Padding 1
Stride

Number of parameters = (Cy, X K X K, + 1) X Coys



Batch Normalization (BN)

e BN = normalize outputs using statistics computed from the mini batch
x( — 1, ()

o) + €
e BN also includes learnable scale and shift parameters

(0

e Models with BN operate in two different modes: “train” vs. “test” or “eval’

o Train mode: compute statistics using the mini batch

o Eval mode: use an exponential moving average of the training statistics
e Helps solve the “vanishing gradient” problem.

o Pushes mini batch activations to be mean 0 and variance 1
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Practice Question

Do we maintain translational equivariance after a max pooling
layer?



Solution
Do we maintain translational equivariance after a max pooling

layer?

No! Consider translating the smallest element in an image. Max
pooling does not mirror this translation.



Practice Question (SP24 Final)

(p) [4 pts] In a convolutional neural network, which of the following changes to network parameters will decrease the size
(number of units) of a hidden layer of the network?

A: Increasing the size of the filters (masks) in C: Changing a pooling layer to use a 4 X 4 sliding
a convolutional layer. (Assume we do not use any window with stride 4 instead of a 2?2 sliding window
padding nor “periodic boundaries.”) with stride 2.
B: Increasing the number of filters (masks) in a D: Decreasing the size of the mini-batch used for
convolutional layer. stochastic gradient descent.

A is correct because larger filters cut more off the edges of an image, yielding a smaller hidden layer. B is incorrect because
more filters require more hidden units. C is correct because the larger sliding window and stride means fewer hidden units after
pooling. D is incorrect because it’s comic relief.



Solution

(p) [4 pts] In a convolutional neural network, which of the following changes to network parameters will decrease the size
(number of units) of a hidden layer of the network?

@ A: Increasing the size of the filters (masks) in @ C: Changing a pooling layer to use a 4 x 4 sliding
a convolutional layer. (Assume we do not use any window with stride 4 instead of a 2?2 sliding window
padding nor “periodic boundaries.”) with stride 2.

O B: Increasing the number of filters (masks) in a O D: Decreasing the size of the mini-batch used for
convolutional layer. stochastic gradient descent.

A is correct because larger filters cut more off the edges of an image, yielding a smaller hidden layer. B is incorrect because
more filters require more hidden units. C is correct because the larger sliding window and stride means fewer hidden units after

pooling. D is incorrect because it’s comic relief.



U
Practice Question (FA22 Final) @]

1.14 Residual networks

The reason that adding residual (i.e. skip) connections to a neural network might help is that:

O They enable information flow across the filter during a convolution.

O They prevent the neural network from learning an identity mapping of the inputs.

O They help make the gradients go to zero when training.

(O They expand the number of different functions that can be learned by the neural network.

(O none of the above.



Solution

1.14 Residual networks

The reason that adding residual (i.e. skip) connections to a neural network might help is that:

O They enable information flow across the filter during a convolution.

O They prevent the neural network from learning an identity mapping of the inputs.

O They help make the gradients go to zero when training.

O They expand the number of different functions that can be learned by the neural network.
O none of the above.

Solution: The correct answer is E.



Practice Question (FA23 Final)

5. A classic example of a kernel for edge detection is shown below. Consider f : R™" — R™",
defined as the convolution of this kernel onto a single-channel image. Assume that there is

appropriate padding resulting in an output with the same shape. What type of operation does
this function not exhibit equivariance with?

-1 -1 -1
-1 8 -1
-1 -1 -1

(O Permutations
(O Translations
O Rotations in multiples of 90 degrees

O Horizontal and vertical reflections



Solution

5. A classic example of a kernel for edge detection is shown below. Consider f : R™" — R™",
defined as the convolution of this kernel onto a single-channel image. Assume that there is
appropriate padding resulting in an output with the same shape. What type of operation does
this function not exhibit equivariance with?

-1 =1 =1
-1 8§ -l
-1 -1 -1

O Permutations

(O Translations

O Rotations in multiples of 90 degrees

O Horizontal and vertical reflections
Solution: The correct answer is (a). Permuting the pixels of the image before applying f does
not have the same effect as applying f and then permuting the output. On the other hand, all

convolutional kernels exhibit translational equivariance, and since this kernel is horizontally
and vertically symmetric, it also exhibits rotational and reflectional equivariance.



Sequence Modelling (RNNs)

e Can handle arbitrarily long sequences
e Suffer from bad training dynamics (try to derive the gradient)

R

f f f P

“un” “chiot” “mignon” <start> “a” “cute” puppy”




The Attention Mechanism

compare query to each key to find Keys and queries
the closest one to get the right are learned.
&
key vector '} query vector

comenation _{ ‘ ‘ | Intuition: key might
(e.g., linear layer + RelU) encode “the su bject
7 of the sentence;
e el and query might ask
{ t Howcanwedothis? ¢ for "the subject of
Til Tip i3 Yio0 Yil Yi2 Yi3 the sentence”.

mignon  chiot Un <START> A cute  puppy



Self-Attention (One Layer)
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ap = Z ¢Vt
Q4 = gXp(el,t)/ Z eXP(el,t’)
et = qi - ki : we'll see why this is important soon
vy = v(ht) before just had v(hy) = h¢, now e.g. v(hy) = W, hy
ki = k(h¢) (just like before) — e.g., ky = Wihy
qt = q(hy) e.g., ¢t = Wyhy
this is not a recurrent model!
but still weight sharing:

hy = o(Wxy + b)

shared weights at all time steps

(or any other nonlinear function)



L P 7
Positional Encodings o —w & & %

e Attention has no concept of ordering. When you're trying to model a sequence

this ordering can be very important.
e \We often encode position as a sin transformation of sequence position.

[ sin(t/100002*1/4) 7
cos(t/10000%*1/4)

sin(t/10000%*2/4)

pe = | cos(t/10000%*2/%)

sin(t/100002*2/4)
cos(t/10000%2/4) |

>

d, is the dimensionality of
positional encoding



Encoder-Decoder Transformer

n
| |
position-wise nonlinear
network

Cross-Attention
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Lecture 11: NN - Attention and Transformers



Practice Question (FA23 Final)

2. Which of the following is not true about Transformer models?

O They add/concatenate a positional encoding to each token in the input sequence
before passing them into the first transformer layer.

O The key, query and value vectors generated from each token in a self-attention layer
must have the same dimension.

O The attention computations for each head in a multi-head attention layer can be
parallelized.

O Transformer models use masked attention for autoregressive tasks during training
time to prevent lookup of future tokens within each self-attention layer.



Solution

2. Which of the following is not true about Transformer models?

O They add/concatenate a positional encoding to each token in the input sequence
before passing them into the first transformer layer.

QO The key, query and value vectors generated from each token in a self-attention layer
must have the same dimension.

QO The attention computations for each head in a multi-head attention layer can be
parallelized.

O Transformer models use masked attention for autoregressive tasks during training
time to prevent lookup of future tokens within each self-attention layer.

Solution: The correct answer is (b). We only need the key and query vectors to have the same
dimension since we need to take their dot products to compute the attention scores but the
value vectors can have a different dimension.



Practice Question (FA21 Final)

What is the dimension of the attention weight matrix Attention weights(Q, K) and the
attention output matrix Attention(Q, K, V) for each head?

T 1s the target sequence length and S is the source sequence length.
S =T = L (sequence length)

d;, = d, = d; (head dimension)



Practice Question (FA21 Final)

What is the dimension of the attention weight matrix Attention weights(Q, K) and the
attention output matrix Attention(Q, K, V) for each head?

Solution: The attention weight matrix Attention weights(Q, K) has dimensions 7 X § =
L X L. The attention output matrix Attention(Q, K, V) has dimensions 7' X d, = L X d,.

Siﬂ% N EQQD Qe —> 5% T = XL
&,
Vot
= T%D EU
de



Dimensionality Reduction + Clustering

e \ery related but not replacements for each other

o usually go hand-in-hand

o first we reduce dimensions of data, then cluster
e Dimensionality Reduction

o PCA decomposition

o t-SNE projection
e Clustering

o K-means



Principal Component Analysis (PCA)

First, we want a new axis which has the 3
shortest distance to all data.

Next we want to find the second best to the first
criterion but subject to being orthogonal to
previous axes.

And so on...




PCA: Algorithm 1 (via Spectral Decomposition)

Given n data points of dimension d, X € R™*4, to perform PCA, we:
(a\%'\"‘?'“}\" gu-lfj‘

0{6‘80 (v\a_“\"\‘e,r (S‘

. . — = AT
2. Compute the covariance math Z= Y
we mlué\ ﬂeeeQ ?QS

3. Compute XTX = QDQT to get eigenvectors (aka peneieakdizectc
’\D(‘
4. Keepthek eigenvectorsw
variance (highest eigenvalues in D).

5. Project your points (original, or new ones) down to
thls subspace X, = XQy|€ R™k, these are your

8
.
7!
6
5+
4!
al
.
o 2"




PCA: Algorithm 2 (via SVD)

1. Pre-process: Subtract mean,
Normalize variance if needed.

2. Calculate SVD of X. Ve U
X = UDV’

3.The new basis is just the first k
right singular vectors.
(first k columns of V)

M=U-%-V*



PCA: Metric — Explained variance

Eigenvalue

w
1

N

—_
1

4l 35%
ol 35%
48%
59%
67% 7504
81% ggo
Rl KELY P9 I o %1% 04% 6% 100%

Din1 Dim2 Dim3 Dim4 Dim5 Dimé Dim7 Dim8 Dim9 Dim10 Dim11




PCA: Limitations and Extensions

e \Works best when data follows Gaussian distribution
o PCA assumes only mean and variance affect
distribution.
o Other distributions may result in poor fitting
o Limited tomlegue,leiign_sliy@etween feats
o One solution is Kernel PCA
e Isn’t robust to scale of features or outliers
@B oo con, arel Shld pocmelice

Yoo foka Priec s PCA— - e selivg
S“«w&>

iSsoe.  can P

)
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Practice Question (SP21 Final)

(g) [4 pts] Select the correct statements about principal component analysis (PCA).

A: PCA is a method of dimensionality reduction

B: If we select only one direction (a one-dimensional subspace) to represent the data, the sample variance of
projected points is zero if and only if the original sample points are all identical

C: The orthogonal projection of a point x onto a unit direction vector w is (x"w)w

D: If we select only one direction (a one-dimensional subspace) to represent the data, PCA chooses the eigen-
vector of the sample covariance matrix that corresponds to the least eigenvalue



Solution

(g) [4 pts] Select the correct statements about principal component analysis (PCA).

@ A:PCA is a method of dimensionality reduction

@ B: If we select only one direction (a one-dimensional subspace) to represent the data, the sample variance of
the projected points is zero if and only if the original sample points are all identical

@ C: The orthogonal projection of a point x onto a unit direction vector w is (x™w)w

O D: If we select only one direction (a one-dimensional subspace) to represent the data, PCA chooses the eigen-
vector of the sample covariance matrix that corresponds to the least eigenvalue



Practice Question (SP24 Final)

(j) [4 pts] Suppose that X € R™“ is a centered design matrix. Recall that its singular value decomposition (SVD) is written
X = UDVT. Select the true statements about principal components analysis (PCA) and the SVD.

A: The principal components are columns of V. C: The principal coordinates for sample point X;
appear in row i of V.
B: When k£ is much less than d, we can find &
principal components faster by computing a partial
SVD than we can by computing the eigenvectors of D: The diagonal entries of D are the eigenvalues
the sample covariance matrix. that correspond to the principal components.



Solution

(j) [4 pts] Suppose that X € R™ is a centered design matrix. Recall that its singular value decomposition (SVD) is written
X = UDVT. Select the true statements about principal components analysis (PCA) and the SVD.

@ A: The principal components are columns of V. O C: The principal coordinates for sample point X;
appear in row i of V.
@ B: When £ is much less than d, we can find &

principal components faster by computing a partial
SVD than we can by computing the eigenvectors of O D: The diagonal entries of D are the eigenvalues
the sample covariance matrix. that correspond to the principal components.



t-distributed Stochastic Neighbor Embedding (t-SNE)

e PCA models the global structure in data
like the major principal axes and the
explained variances.

e {-SNE models the local data structure
ie. the neighbourhood of each data

9 point and not the overall pattern itself.
o Use if non-linear relationships
define clusters
o Can yield orthogonal insights to
PCA
o Allows visualizing very high
dimensions



From NE to stochastic NE (SNE)

» Now make the event of two samples being neighbors a
random variable:

* The probability that x; “chooses” x; as its neighbor (x € R?) is
exp(—||xi—xj||2/2cri2)
Lijeed exp(—||xi—xk||2/20'l-2)

* Smells like a Gaussian, but normalized so that 1 = X; Pjc;.

given by P ;= and P;

J€J

=0 .

« Set g/ adaptively such that entropy of P(_, is constant, ¥, ;.; Pj; log P ;
 Symmetrize & normalize, P;; = P;; = ( it Pic j) Which can be

interpreted as probability to pick this palr out of all pairs of points.
\<

D 5 ¥ wen ked

N Ry

Q simler =P

(‘7 BOQ/\_ (Ve e




exp (—”xi - xj||2/20i2)

From NE to stochastic NE (SNE) 7 Seenthi=sierzd)

» From original data, X € R™ 4 \we have defined stochastic
neighborhoods with probability distribution, P = {P;;}.

« Now posit low-dimensional representations, Y € R™*¥, and
define stochastic neighborhoods for them, @ = {Q;;},

2
P C el
IV Y ek exp(=llyi—yill?)

 Goal: find Y such that stochastic neighborhood structures are
preserved (Q = P).

(setting o = %)

« Solution: minimize the KL-divergence between P and Q:
— Pij
= X Pij log o

.E@I 1Q) i Lij -
AW

Ml e Q ST \er~ "5‘"‘" 0%




Fixing SNE with t-SNE

o . - Gaussian
» Change the distribution in the embedding S Ll
space, Q;; to have a heavier-tailed g o distribution
b . . . g . (V)]
distribution, a t-distribution. o
o
S T T T T |
2 -4 -2 0 2 4
exp(-[lvi-v;l”)
* SNE used Q;._; = .
Qjei Y ier exp(=yi—yill?) -
p(x) o (1+ £)~(vF1)/2
(li-vI?)"
p )
B for v =1 we get p(x) x 1752

* t5NE uses Qjei =55

* Everything else remains the same as in SNE.



Practice Question (FA21 Final)

4. (2 points) River has some high-dimensional data from a genetic sequencing experiment, but
he’s not sure whether to use PCA or tSNE for dimensionality reduction. Help him by selecting
all the true statements here. Mark true or false for the statements below.

OTQF:

OTQF:

OTQF:

OTQF:

If River wants deterministic dimensionality reduction results, tSNE is a
better choice.

If River is confident that the underlying structure of his data is non-linear,
tSNE is probably a better choice.

If River wants to ensure that local structures are preserved (neighboring
points in the original data sets are still close to each other in the new repre-
sentation), tSNE is a better choice.

If River wants to use the reduced features in a linear regression model,
tSNE is probably a better choice.



Solution

4. (2 points) River has some high-dimensional data from a genetic sequencing experiment, but
he’s not sure whether to use PCA or tSNE for dimensionality reduction. Help him by selecting
all the true statements here. Mark true or false for the statements below.

OTQOF: If River wants deterministic dimensionality reduction results, tSNE is a
better choice.

OTQOF: If River is confident that the underlying structure of his data is non-linear,
tSNE is probably a better choice.

OTQOF: If River wants to ensure that local structures are preserved (neighboring
points in the original data sets are still close to each other in the new repre-
sentation), tSNE is a better choice.

OTQOF: If River wants to use the reduced features in a linear regression model,
tSNE is probably a better choice.

Solution: B and C are true. A and D are false.



Practice Question (FA22 Midterm)

10. Julia is using SNE to visualize her high-dimensional dataset in two dimensions. She runs her
code twice to find that it outputs different visualizations each time. Why is this expected? You
may assume that Julia did not intentionally make her code deterministic by, for example, fixing
the random seed.

O This is expected due to the nonconvexity of the optimization objective, and also
occurs with t-SNE.

O This is expected due to the Gaussian distributions in SNE, and could be addressed
by using t-SNE instead.

O This is expected due to the iterative nature of SNE, and could be addressed by using
PCA to find the solution to the SNE objective without gradient descent.



Solution

10. Julia is using SNE to visualize her high-dimensional dataset in two dimensions. She runs her
code twice to find that it outputs different visualizations each time. Why is this expected? You
may assume that Julia did not intentionally make her code deterministic by, for example, fixing
the random seed.

O This is expected due to the nonconvexity of the optimization objective, and also
occurs with t-SNE.

O This is expected due to the Gaussian distributions in SNE, and could be addressed
by using t-SNE instead.

O This is expected due to the iterative nature of SNE, and could be addressed by using
PCA to find the solution to the SNE objective without gradient descent.

Solution: (a) This is expected due to the nonconvexity of the optimization objective, and also
occurs with t-SNE



Conclusion



Some General Study Tips

e Linear Algebra is in general very important for machine learning
o  Advice: review linear algebra from HW1, HW2 and ensure that you are comfortable with manipulating
matrices
e Know how to take derivatives
o We may ask you to derive some gradients, try not to get too bogged down and use your sanity
checks: gradients wrt scalars should be the same shape as the denominator.
o Element-wise always works!
e Review probability theory
o Basic properties of expectation and variance (like linearity and independence rules will be helpful).
o Understanding MLE and MAP estimation will also be useful
e Relate concepts back to first principles
o It will be generally helpful to have a strong grasp of the basics (linear+logistic regression, gradient
descent) to guide your approach to more complicated problems

e Get a good night’s sleep!



Inspo and Such

These slides were heavily inspired (and in some cases directly taken) from CS182
SP22 review materials:

https://cs182sp22.qithub.io/assets/lecture slides/2022.02.28-mt1-review.pdf

https://cs182sp22.qgithub.io/assets/lecture _slides/2022.04.25-mt2-review.pdf

We also reused materials from the previous Fall lteration of 189.



