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Multivariate Gaussians

● We say a random vector follows the multivariate Gaussian distribution, iff
○ Each coordinate is marginally and conditionally Gaussian. 

                

○ It follows the PDF of a multivariate Gaussian distribution
○ It is a linear transformation of a multivariate gaussian. 
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Solution:

(b) X and Y appear to be marginally Gaussian but not jointly Gaussian

Why? Recall that multivariate Gaussians must be conditionally gaussian. If I give 
you the value of X, you can immediately tell me the sign of Y. This means 
coordinates random variables cannot be conditionally Gaussian because there is 
an area with zero density. 



Maximum Likelihood Estimation (MLE)

● Given some data X and an idea of what distribution the data came from 
(Gaussian, Poisson, etc), MLE identifies the parameters of that distribution 
that maximize the probability of observing the data X

● E.g. if {x_1, x_2.. x_n}  are sampled from IID from a dist X ~ N(\mu, \s , solve 

●                           is the likelihood function
● Two tricks to getting through these problems:

○ IID: turns a joint probability into a product of individual probabilities
○ Log-likelihood: applying log to the likelihood function does not shift the optimal parameters (log 

is strictly increasing function), but can simplify math necessary (exponents ⇒ multiplication, 
products ⇒ sums)

L is fraSam X
#

↑ is for of X

with param &

L(OiX)=PYPon



Maximum Likelihood Estimation (MLE)

E.g.: goal is to determine the “best” parameters mu and sigma for the blue data:

https://stackoverflow.com/questions/55353366/gaussian-data-fit-varying-depending-on-position-of-x-data



Example:

We observe the following data points from a uniform distribution U[a, b]:

0, 4, -1, 5, 8, 3, 4.5

What is the MLE of b?

Is the MLE of b unbiased? Recall the definition of bias: 
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Maximum Likelihood Estimation (MLE)

Previous slide models just data 
points x. How to model y as a 
function of x?

For every x, let the distribution of y 
have different parameters. Use MLE 
to find the best parameters to 
explain y given the observed x.

https://suriyadeepan.github.io/2017-01-22-mle-linear-regression/



MLE for Linear Regression

Two equivalent ways of looking at this (“Gaussian linear model”):

To find the best weights, we maximize the likelihood function:

● note that we break up the joint probability into a product of probs. since samples IID 
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Regularization in Linear Regression

Recall MLE estimate for linear regression: (XTX)-1XTy = w*

● This assumes the data are distributed normally, but nothing is assumed about 
the distribution of w (what w are we more likely to see)

● MLE applied to data for the linear regression model.
● The result is the OLS estimate!!!



Maximum a posteriori estimation (MAP)

● Alternative to MLE that incorporates additional pre-existing knowledge on how 
the data are distributed (namely, what the parameters of the distribution likely 
are).

● Mathematically: reformulate objective function to maximize posterior 
probability:

likelihood!
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MLE vs. MAP

● Maximize p(data|model) vs. maximize p(model|data).
● MAP is explicit about what the prior is, but that comes with the burden of 

identifying a prior.
● Both include the likelihood function.
● Bayesian analysis in general requires normalizing by p(data), though this is 

avoided in MAP because p(data) does not vary with the parameters that are 
being maximized over.

MLE MAP



MAP in Practice

If we do MAP for linear regression with a Gaussian prior, we get out ordinary least 
squares plus an L2 regularization term:

Other regularization terms fall out if you use a different prior (e.g. Laplace prior => 
L1 regularization).

# (w) prior, notnecessarily normalized

Si =I usually not
needed

>

-

ridge tMulli
winloot M

Lasso
- +

will , WinLaplan (0 , b) A



Example: Find the MAP prior

You have an interesting guess that the l3-norm gives you a useful prior for linear 
regression, so you want to minimize 

With the l3 norm cubed is defined as

Find a corresponding (unnormalized) prior          such that the minimization problem is 
equivalent to the MAP problem of the Gaussian linear model with prior 
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Generative vs Discriminative Classification

● Generative: models the joint p(x, y) then chooses the y that maximizes        
p(y | x). 

● Maximizing p(y | x) is equivalent to maximizing p(x | y)p(y)
○ p(y) = sample proportions of individual labels
○ p(x | y) is usually what we model (ex. Gaussian)
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Discriminative :Go models P(YIX) directly
Generative :So models P(X , Y) or

P(X14)

use Bayes role to then get P(YK)



Logistic regression

● DISCRIMINATIVE
● Uses the sigmoid function (from lecture 7 slides):

o(z)
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Logistic regression: optimization

Minimize the following cost function (s = sigma, taken from Prof. Shewchuk’s lecture notes)

No closed form solution! So we do gradient descent.

Recall the derivative of the sigmoid function (good for your cheatsheet)

= Sigmoid
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Works for convex 
functions!

Works in practice for 
non-convex functions 
involving neural 
networks!

Lecture 9: Backprop and Gradient Descent 2



Neural networks
● Repeated applications of linear mapping W(ℓ) (potentially plus bias bℓ) followed by non-linearity gℓ

Lecture 9: Backprop and Gradient Descent 2



Backpropagation
● Efficient recursive algorithm to compute
● Base case:                                                    ,     Inductive step:  

● Partial derivatives wrt weights: (All these operations are efficiently vectorizable)

Lecture 9: Backprop and Gradient Descent 2



Backpropagation Practice

Lecture 9: Backprop and Gradient Descent 2



Solution (see Discussion 4)

Lecture 9: Backprop and Gradient Descent 2



Feed Forward Neural Nets (also called MLPs)

● Use a linear function to transform inputs before activation

https://scientistcafe.com/ids/feedforward-neural-network

Lecture 9: Backprop and Gradient Descent 2
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Convolutional Neural Networks

Lecture 10: NN - CNN, BatchNorm, ResNets

2D Convolution



Lecture 10: NN - CNN, BatchNorm, ResNets

Convolutional Neural Networks (CNNs)



Convolutional Neural Networks (CNNs)

● Convolutions are translationally equivariant
○ Translate input = translate output by same amount (same function 

applied)
○ Reduces number of params via weight sharing
○ Uses observation that many useful image features are local

● Pooling layers are commonly used to downsample image spatial dimensions
○ We flatten or pool the final output into a one dimensional vector, pass it 

through one or more linear layers, and then (for classification) get our 
final classification vector.

Lecture 10: NN - CNN, BatchNorm, ResNets



Residual Connections and ResNet

● Very simple high level idea:                                     , rather than  
● Add a “skip connection” or “residual connection” to CNN
● Allowed for training much deeper, more performant models
● The loss “landscape” of neural networks with residual connections looks nicer

Lecture 10: NN - CNN, BatchNorm, ResNets
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Lecture 10: NN - CNN, BatchNorm, ResNets

CNN Hyperparameters



Batch Normalization (BN)

● BN = normalize outputs using statistics computed from the mini batch 

● BN also includes learnable scale and shift parameters 

● Models with BN operate in two different modes: “train” vs. “test” or “eval” 
○ Train mode: compute statistics using the mini batch 
○ Eval mode: use an exponential moving average of the training statistics

● Helps solve the “vanishing gradient” problem.
○ Pushes mini batch activations to be mean 0 and variance 1

Lecture 10: NN - CNN, BatchNorm, ResNets



Lecture 10: NN - CNN, BatchNorm, ResNets



Practice Question

Do we maintain translational equivariance after a max pooling 
layer? 

Lecture 10: NN - CNN, BatchNorm, ResNets



Solution

No! Consider translating the smallest element in an image. Max 
pooling does not mirror this translation. 

Lecture 10: NN - CNN, BatchNorm, ResNets

Do we maintain translational equivariance after a max pooling 
layer? 



Practice Question (SP24 Final)



Solution



Practice Question (FA22 Final) .



Solution



Practice Question (FA23 Final)



Solution



Sequence Modelling (RNNs)

● Can handle arbitrarily long sequences
● Suffer from bad training dynamics (try to derive the gradient)

Lecture 11: NN - Attention and Transformers



The Attention Mechanism

Lecture 11: NN - Attention and Transformers



Lecture 11: NN - Attention and Transformers

Self-Attention (One Layer)



Positional Encodings

● Attention has no concept of ordering. When you’re trying to model a sequence 
this ordering can be very important. 

● We often encode position as a sin transformation of sequence position. 

Lecture 11: NN - Attention and Transformers
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Transformers

Lecture 11: NN - Attention and Transformers

Encoder-Decoder Transformer



Lecture 11: NN - Attention and Transformers

Practice Question (FA23 Final)



Lecture 11: NN - Attention and Transformers

Solution



Practice Question (FA21 Final)

Lecture 11: NN - Attention and Transformers



Practice Question (FA21 Final)

Lecture 11: NN - Attention and Transformers
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Dimensionality Reduction + Clustering

● Very related but not replacements for each other
○ usually go hand-in-hand 
○ first we reduce dimensions of data, then cluster 

● Dimensionality Reduction
○ PCA decomposition
○ t-SNE projection

● Clustering
○ K-means 

Lecture 12: Dimensionality Reduction & PCA



Principal Component Analysis (PCA)

First, we want a new axis which has the 
shortest distance to all data.

Next we want to find the second best to the first 
criterion but subject to being orthogonal to 
previous axes.

And so on...

Lecture 12: Dimensionality Reduction & PCA



Lecture 12: Dimensionality Reduction & PCA

PCA: Algorithm 1 (via Spectral Decomposition)

X E =* X*X (although scaling
doesn't matter
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we only need PCs)
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PCA: Algorithm 2 (via SVD) 

1. Pre-process: Subtract mean,
 Normalize variance if needed.

2. Calculate SVD of X.
X = UDV’

3.The new basis is just the first k
right singular vectors.
(first k columns of V)

Lecture 12: Dimensionality Reduction & PCA



PCA: Metric – Explained variance

Lecture 12: Dimensionality Reduction & PCA

A



PCA: Limitations and Extensions

● Works best when data follows Gaussian distribution
○ PCA assumes only mean and variance affect 

distribution 
○ Other distributions may result in poor fitting

● Limited to linear relationships between feats
○ One solution is Kernel PCA

● Isn’t robust to scale of features or outliers

Lecture 12: Dimensionality Reduction & PCA
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Practice Question (SP21 Final)

Lecture 12: Dimensionality Reduction & PCA



Solution

Lecture 12: Dimensionality Reduction & PCA



Practice Question (SP24 Final)



Solution



t-distributed Stochastic Neighbor Embedding (t-SNE)

● PCA models the global structure in data 
like the major principal axes and the 
explained variances.

● t-SNE models the local data structure 
ie. the neighbourhood of each data 
point and not the overall pattern itself. 
○ Use if non-linear relationships 

define clusters
○ Can yield orthogonal insights to 

PCA 
○ Allows visualizing very high 

dimensions

Lecture 13: t-SNE



Lecture 13: t-SNE
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Lecture 13: t-SNE
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Lecture 13: t-SNE



Practice Question (FA21 Final)



Solution



Practice Question (FA22 Midterm)



Solution



Conclusion



Some General Study Tips

● Linear Algebra is in general very important for machine learning
○ Advice: review linear algebra from HW1, HW2 and ensure that you are comfortable with manipulating 

matrices
● Know how to take derivatives

○ We may ask you to derive some gradients, try not to get too bogged down and use your sanity 
checks: gradients wrt scalars should be the same shape as the denominator.

○ Element-wise always works!
● Review probability theory 

○ Basic properties of expectation and variance (like linearity and independence rules will be helpful).
○ Understanding MLE and MAP estimation will also be useful

● Relate concepts back to first principles
○ It will be generally helpful to have a strong grasp of the basics (linear+logistic regression, gradient 

descent) to guide your approach to more complicated problems
● Get a good night’s sleep!



Inspo and Such

These slides were heavily inspired (and in some cases directly taken) from CS182 
SP22 review materials:

https://cs182sp22.github.io/assets/lecture_slides/2022.02.28-mt1-review.pdf

https://cs182sp22.github.io/assets/lecture_slides/2022.04.25-mt2-review.pdf

We also reused materials from the previous Fall Iteration of 189.


