Welcome to CS 189/289A! This class covers theoretical foundations, algorithms, methodologies, and applications for machine learning. Topics may include supervised methods for regression and classication (linear models, trees, neural networks, ensemble methods, instance-based methods); generative and discriminative probabilistic models; deep learning models including CNNs, transformers, graph neural networks for vision and language tasks; and Markovian models for reinforcement learning and robotics.
Professors will post slides prior to lecture at this Google Drive folder (for faster access). The material here is redundant with the website, but it may take up to a day or two for the website to get updated with the slides after lecture. The “Post-Lecture” subfolder contains updates to slides that the professors may make right after lecture. In addition, lecture recordings will be uploaded automatically to this Haas Panopto folder.
If you have not been added to EdStem, you may join through this link.
Note: The topics for future lectures, discussions, and HWs are tentative and may be moved around, changed, or removed.